Pseudomonas aeruginosa продуцирует рамнолипидные биоповерхностно-активные вещества. Тонкослойная хроматография обнаруживает и определяет долю моно- и дирамнолипидов, продуцируемых каждым штаммом. Количественное определение общего количества рамнолипидов включает в себя оценку эквивалентов рамнозы, присутствующих в этих биосурфактантах, экстрагированных из надосадочной жидкости культур с использованием метода орцинола.
Экологическая бактерия Pseudomonas aeruginosa является условно-патогенным микроорганизмом с высокой устойчивостью к антибиотикам, представляющим опасность для здоровья. Эта бактерия продуцирует высокие уровни биоповерхностно-активных веществ, известных как рамнолипиды (RL), которые представляют собой молекулы со значительной биотехнологической ценностью, но также связаны с вирулентными свойствами. В этом отношении обнаружение и количественная оценка ЛЛ могут быть полезны как для биотехнологических приложений, так и для биомедицинских исследовательских проектов. В этой статье мы пошагово демонстрируем метод детектирования продукции двух форм RL, продуцируемых P. aeruginosa с помощью тонкослойной хроматографии (TLC): монорамнолипидов (mRL), молекул, состоящих из димера жирных кислот (в основном C10-C10), связанных с одной группой рамнозы, и ди-рамнолипидов (dRL), молекул, состоящих из аналогичного димера жирных кислот, связанного с двумя группами рамнозы. Кроме того, мы представляем метод измерения общего количества RL, основанный на кислотном гидролизе этих биоповерхностно-активных веществ, экстрагированных из надосадочной жидкости культуры P. aeruginosa, и последующем обнаружении концентрации рамнозы, которая реагирует с орцином. Комбинация обоих методов может быть использована для оценки приблизительной концентрации mRL и dRL, продуцируемых конкретным штаммом, как показано здесь на примере типовых штаммов PAO1 (филогруппа 1), PA14 (филогруппа 2) и PA7 (филогруппа 3).
Pseudomonas aeruginosa является экологической бактерией и условно-патогенным микроорганизмом, вызывающим серьезную озабоченность из-за наличия у нее признаков, связанных с вирулентностью, и высокой устойчивости к антибиотикам 1,2. Характерным вторичным метаболитом, продуцируемым этой бактерией, является биосурфактант RL, который вырабатывается скоординированным образом с несколькими признаками, связанными с вирулентностью, такими как пиоцианин феназин, антибиотик с окислительно-восстановительной активностью, и протеаза эластаза3. Тензиоактивные и эмульгирующие свойства RL были использованы в различных промышленных приложениях и в настоящее время коммерциализируются4.
Большинство штаммов P. aeruginosa, принадлежащих к филогруппам 1 и 2, продуцируют два типа RL: mRL, который состоит из одной группы рамнозы, связанной с димером жирных кислот, в основном состоящим из 10 атомов углерода, и dRL, который содержит дополнительную группу рамнозы, связанную с первой рамнозой4 (см. рис. 1). Тем не менее, сообщалось, что две второстепенные филогруппы P. aeruginosa (группы 3 и 5) продуцируют только mRL 5,6. Эти два типа RL содержат смесь димеров жирных кислот, которые, как уже упоминалось, в основном представляют собой C10-C10, но также образуются меньшие доли молекул, содержащих димеры C12-C10, C12-C12 и C10-C12:1. Сообщается о характеристике конгенеров RL, продуцируемых различными штаммами с использованием ВЭЖХ, МС/МС 7,8. Методы, описанные в данной работе, позволяют дифференцировать только mRL и dRL, но не могут быть использованы для характеристики родственных соединений RL.
P. aeruginosa и некоторые виды Burkholderia являются естественными продуцентами RL9, но первая бактерия является наиболее эффективным продуцентом. Тем не менее, коммерчески используемый RL в настоящее время продуцируется в производных Pseudomonas putida KT2440, экспрессирующих гены P. aeruginosa, чтобы избежать использования этого условно-патогенного микроорганизма10,11. Обнаружение и количественное определение RL, продуцируемого P. aeruginosa, имеет большое значение для изучения молекулярных механизмов, участвующих в экспрессии признаков, связанных с вирулентностью12, в характеристике штаммов, принадлежащих к кладам 3 или 5,13, и для конструирования производных P. aeruginosa, которые в избытке продуцируют эти биоповерхностно-активные вещества, обладая при этом сниженной вирулентностью14. Производство биоповерхностно-активных веществ различными микроорганизмами было обнаружено на основе некоторых общих характеристик этих соединений, таких как метод капли коллапса или индекс эмульгирования15, но эти методы не являются ни точными, ни специфичными16.
В данной работе мы описываем протокол детектирования mRL и dRL с использованием жидкостной экстракции общего RL из супернатантов культур различных штаммов типа P. aeruginosa и разделения обоих типов RL с помощью TLC. В этом методе RL, выделенные из надосадочной жидкости культуры, разделяются по их дифференциальной растворимости в растворителях, используемых для TLC, вызывая дифференциальную миграцию на силикагелевой пластине. Таким образом, мРЛ имеют более быструю миграцию, чем дРЛ, и могут быть обнаружены как отдельные пятна при высыхании пластин и окрашивании α-нафтолом.
Описанный здесь метод выявления mRL и dRL методом TLC основан на ранее опубликованной статье17, который прост в исполнении и не требует дорогостоящего оборудования. Этот метод оказался полезным для обнаружения ЛЛ в различных изолятах 13 P. aeruginosa с использованием соответствующего контроля, такого как мутант, полученный из P. aeruginosa, неспособный продуцировать РЛ. Тем не менее, это не является предпочтительным методом для характеристики новых биоповерхностно-активных веществ, продуцируемых бактериями, отличными от Pseudomonas aeruginosa, из-за их недостаточной специфичности.
Кроме того, представлен метод количественной оценки рамнозных эквивалентов общего RL, экстрагированного из надосадочной жидкости культуры P. aeruginosa . Этот метод количественно определяет эти биоповерхностно-активные вещества на основе реакции орцина с восстановительными сахарами, в результате чего получается продукт, который может быть измерен спектрофотометрически при длине волны 421 нм, как описано ранее18. Поскольку реакция с орцинолом не является специфичной для рамнозы, важно выполнять этот метод с RL, экстрагированным из надосадочной жидкости культуры, которая не содержит значительных количеств других сахарсодержащих молекул, таких как липополисахариды (ЛПС). Для жидкой экстракции RL18 здесь используется подкисленная смесь хлороформа/метанола, но также можно использовать этилацетат, а твердофазная экстракция (SPE) дает оченьхорошие результаты. Описанный здесь метод орцина не требует сложного оборудования и может обеспечить надежные результаты, если его применять с особой тщательностью при подготовке анализируемых образцов, как уже говорилось. Чтобы обеспечить надлежащую подготовку образца, важно включить мутант Pseudomonas aeruginosa rhlA , неспособный продуцировать RL20 , и выполнить три биологические и три технические репликации для каждого определения.
В литературе16,21 существуют значительные разногласия относительно определения RL методом орцинола, при этом некоторые исследования предполагают, что продукция RL завышена и что анализу не хватает специфичности для рамнозы, что потенциально обнаруживает другие сахара. Тем не менее, мы демонстрируем здесь, что описанные методы могут быть точными и специфичными при соответствующих условиях. Кроме того, для сравнения с процедурами, описанными в этой статье, мы используем UPLC-MS/MS обнаружение стандарта dRL и демонстрируем, что аналогичные результаты получены с помощью метода орцина. Подробный протокол количественного определения RL с использованием этого метода включен в Дополнительный файл 1.
Эти протоколы иллюстрируются типовыми штаммами PAO1 (филогруппа 1), PA14 (филогруппа 2) и PA7 (филогруппа 3). Эти штаммы были выбраны потому, что они хорошо охарактеризованы и продуцируют различные профили RL.
Наиболее точным методом обнаружения и количественного определения RL является ВЭЖХ в сочетании с масс-спектрометрией (MS)7,8,27; Однако для этого требуется специализированное и дорогостоящее оборудование, которое может быть недоступно мн…
The authors have nothing to disclose.
Лаборатория GSCh частично поддерживается грантами IN201222 от Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT), Dirección General de Asuntos del Personal Académico -UNAM.
1-NAPHTHOL | SIGMA-ALDRICH | 70442 | |
ACETIC ACID | J.T. BAKER | 9508-02 | |
CENTRIFUGE | For centrifuging tubes 1.5 mL and 50 mL | ||
CHLOROFORM | J.T. BAKER | 9180-02 | |
DRYING OVEN | |||
ETHER | J.T. BAKER | 9244-02 | |
GLASS PIPETTE | SIGMA-ALDRICH | CLS706510 | |
HYDROCHLORIC ACID | J.T. BAKER | 5622-02 | |
LB | |||
L-RHAMNOSE MONOHYDRATE | SIGMA-ALDRICH | R-3875 | |
METHANOL | J.T. BAKER | 9049-02 | |
ORCINOL MONOHYDRATE | SIGMA-ALDRICH | O1875 | |
PPGAS Broth | Tris HCL (0.12M), Potassium Chloride ( 0.02M) Ammonium Chloride (0.02M), Peptone (1%), pH 7.4 Autoclaved. Add Glucose (5%) and Magnesium Sulfate (0.0016M) | ||
QUARTZ CELL (CUVETTE) | SIGMA-ALDRICH | Z276669 | |
RECTANGULAR TLC DEVELOPING TANK | FISHER SCIENTIFIC | K4161801020 | |
RHAMNOLIPIDS | SIGMA-ALDRICH | R-90 | |
SPECTROPHOTOMETER | VIS | ||
SPRAYER | SIGMA-ALDRICH | Z529710-1EA | |
SULFURIC ACID | J.T. BAKER | 9681-02 | |
TES TUBES 5mL | CORNING | 352002 | |
TLC SILICA GEL 60 F254 | MERCK | 1.05554.0001 | |
WATER BATH | > 80 °C |