Ce protocole décrit l’isolement des astrocytes purifiés et de la microglie de la moelle épinière de souris adulte, facilitant ainsi les applications ultérieures telles que l’analyse de l’ARN et la culture cellulaire. Il comprend des méthodes et des procédures détaillées de dissociation cellulaire conçues pour améliorer à la fois la qualité et le rendement des cellules isolées.
Les astrocytes et les microglies jouent un rôle central dans le développement du système nerveux central, les réponses aux blessures et les maladies neurodégénératives. Ces cellules très dynamiques présentent des réponses rapides aux changements environnementaux et présentent une hétérogénéité significative en termes de morphologie, de profils transcriptionnels et de fonctions. Bien que notre compréhension des fonctions des cellules gliales dans la santé et la maladie ait considérablement progressé, il reste nécessaire de procéder à des analyses in vitro spécifiques aux cellules dans le contexte d’agressions ou de blessures afin de caractériser de manière exhaustive des populations cellulaires distinctes. L’isolement des cellules de la souris adulte offre plusieurs avantages par rapport aux lignées cellulaires ou aux animaux nouveau-nés, car il permet d’analyser les cellules dans des conditions pathologiques et à des moments précis. De plus, l’accent mis sur l’isolement spécifique de la moelle épinière, à l’exclusion de l’atteinte cérébrale, permet la recherche sur les pathologies de la moelle épinière, y compris l’encéphalomyélite auto-immune expérimentale, les lésions de la moelle épinière et la sclérose latérale amyotrophique. Ce protocole présente une méthode efficace pour isoler les astrocytes et la microglie de la moelle épinière de souris adulte, facilitant l’analyse immédiate ou future avec des applications potentielles dans des études fonctionnelles, moléculaires ou protéomiques en aval.
Les astrocytes et les microglies sont des cellules gliales polyvalentes qui jouent un rôle vital dans le système nerveux central (SNC), englobant des responsabilités telles que la régulation de la fonction neuronale, la contribution au développement du SNC, le maintien de la barrière hémato-encéphalique et la participation à d’autres processus critiques 1,2,3,4 . Outre leur rôle dans le maintien de l’homéostasie, ces cellules gliales jouent également un rôle central dans les mécanismes de blessure et de réparation. Les microglies sont bien connues pour leurs capacités phagocytaires, inflammatoires et migratoires à la suite d’insultes ou de blessures 5,6,7. Les réponses des astrocytes dans la maladie sont tout aussi diverses, englobant des contributions à l’inflammation, à la formation de cicatrices gliales et à la compromission de la barrière hémato-encéphalique 8,9. Bien que notre compréhension des rôles néfastes et réparateurs des microglies et des astrocytes dans le SNC se soit améliorée, l’hétérogénéité inhérente à leur structure et à leur fonction nécessite des outils robustes pour les étudier dans divers contextes.
Pour mieux comprendre le rôle de la microglie et des astrocytes dans la santé et la maladie, il faut une approche combinée d’études in vivo et in vitro . Les techniques in vivo tirent parti de la diaphonie complexe entre les cellules gliales et les neurones au sein du SNC, tandis que les méthodologies in vitro s’avèrent précieuses pour évaluer les fonctions ou les réponses d’une seule cellule sous des stimuli spécifiques. Chaque méthode offre des avantages uniques ; Les études in vitro sont essentielles pour comprendre les rôles spécifiques de ces types de cellules sans apport direct ou indirect des cellules voisines. De plus, les essais in vitro utilisant des lignées cellulaires immortelles présentent certains avantages, notamment la capacité de proliférer indéfiniment, la rentabilité et la facilité d’entretien. Cependant, il est important de noter que les cellules primaires imitent plus étroitement les réponses physiologiques normales que les lignées cellulaires. Cette pertinence physiologique est cruciale dans les tests fonctionnels et les analyses transcriptomiques.
L’un des défis liés à l’obtention de cellules primaires, en particulier à partir de la moelle épinière de souris adultes, réside dans la quantité et la viabilité des échantillons. La moelle épinière adulte, étant plus petite que le cerveau et contenant une quantité importante de myéline, pose des difficultés uniques. Bien qu’il existe plusieurs protocoles publiés détaillant l’isolement de cellules gliales pures et viables provenant d’animaux nouveau-nés ou du cerveau de souris adultes 10,11,12,13, ces méthodologies peuvent ne pas convenir à l’étude des maladies et des lésions spécifiques à la moelle épinière. Dans ce protocole, nous proposons une procédure complète pour isoler efficacement les microglies et les astrocytes purs et viables de la moelle épinière de souris adultes, facilitant ainsi les applications en aval dans les cultures cellulaires et les analyses transcriptomiques. Ce protocole a été utilisé avec succès pour isoler ces cellules de souris adultes âgées de 10 semaines à 5 mois, démontrant son utilité dans divers contextes, y compris des études impliquant des souris knock-out conditionnelles, des réponses aux médicaments, des recherches sur le développement et des modèles liés à l’âge.
L’isolement de cellules primaires pures et viables est primordial pour étudier la structure et la fonction de types cellulaires spécifiques. Chez la souris adulte, en particulier dans la moelle épinière, cette tâche pose des défis importants, car les protocoles existants ne sont souvent pas adaptés à la moelle épinière adulte10,17. Ce protocole présente une méthode efficace et rentable applicable à diverses applications en aval, notamment la cultur…
The authors have nothing to disclose.
Nous remercions Castle Raley du George Washington University Genomics Core pour les analyses d’ARN et Q2 Lab Solutions pour les analyses de séquençage d’ARN. Ces travaux ont été financés par l’Institut national des troubles neurologiques et des accidents vasculaires cérébraux [numéro de subvention F31NS117085] et le Fonds de dotation de recherche Vivian Gill au Dr Robert H. Miller. La figure 1 a été créée avec BioRender.com.
2,2,2-Tribromoethanol | Sigma Aldrich | T48402 | |
24 well tissue culture plate | Avantor | 10861-558 | |
2-Methyl-2-butanol, 98% | Thermo Fisher | A18304-0F | |
4',6-Diamidino-2-Phenylindole, Dihydrochloride | Invitrogen | D1306 | 1:1000 |
45% glucose solution | Corning | 25-037-CI | |
5 mL capped tubes | Eppendorf | 30122305 | |
Acetic acid | Sigma-Adlrich | A6283 | |
Adult Brain Dissociation Kit | Miltenyi | 103-107-677 | |
Anti-ACSA2 Microbead Kit | Miltenyi | 130-097-679 | |
Anti-Iba1 | Wako | 019-1974 | |
Bioanalyzer | Agilent Technologies | G2939BA | |
C57BL/6J wild-type (WT) mice | Jackson Laboratories | ||
CD11b (Microglia) MicroBeads | Miltenyi | 130-093-634 | |
Celltrics 30 µm filter | Sysmex Partec | 04-004-2326 | |
Counting Chamber (Hemacytometer) | Hausser Scientific Co | 3200 | |
Deoxyribonuclease I from bovine pancreas | Sigma Aldrich | D4527-40KU | |
Distilled water | TMO | 15230001 | |
DMEM/F12 | Thermo Fisher | 11320074 | |
DNase for RNA purification | Qiagen | 79254 | |
Dulbecco's phosphate-buffered saline | Thermo Fisher | 14040117 | |
Fetal bovine serum | Thermo Fisher | A5209401 | |
GFAP antibody (mouse) | Santa Cruz | sc-33673 | 1:500 |
GFAP antibody (rabbit) | Dako | Z0334 | 1:500 |
Goat anti-mouse 594 IgG | Invitrogen | a11032 | 1:500 |
Goat anti-mouse 594 IgM | Invitrogen | a21044 | 1:300 |
Goat anti-Rabbit 488 IgG | Invitrogen | a11008 | 1:500 |
Iba1 antibody (rabbit) | Wako | 019-1974 | 1:500 |
MACS Separator | Miltenyi | 130-042-303 | |
Masterflex C/L Pump System | Thermo Fisher | 77122-22 | |
MEM | Corning | 15-015-CV | |
Methanol | Sigma-Adlrich | 439193 | |
Mounting Medium | Vector Laboratories | H-1000-10 | |
MS Columns | Miltenyi | 130-042-401 | |
O4 Antibody | R&D | MAB1326 | |
Penicillin-Streptomycin | Gibco | 15070063 | |
Plugged 9" glass pasteur pipette | VWR | 14672-412 | |
RNeasy Plus Micro Kit | Qiagen | 74034 | |
Royal-tek Surgical scalpel blade no. 10 | Fisher scientific | 22-079-683 | |
Small Vein Infusion Set, 23 G x 19 mm | Kawasumi | D3K2-23G |