الخلايا البطانية اللمفاوية Leptomeningeal (LLECs) ، وهي نوع من الخلايا داخل الجمجمة تم تحديده مؤخرا ، لها وظائف غير مفهومة بشكل جيد. تقدم هذه الدراسة بروتوكولا قابلا للتكرار لحصاد LLECs من الفئران وإنشاء مزارع أولية في المختبر . تم تصميم هذا البروتوكول لتمكين الباحثين من الخوض في الوظائف الخلوية والآثار السريرية المحتملة ل LLECs.
الخلايا البطانية اللمفاوية Leptomeningeal (LLECs) هي مجموعة خلوية داخل الجمجمة تم اكتشافها مؤخرا مع توزيع فريد متميز بوضوح عن الخلايا البطانية اللمفاوية الطرفية. وظيفتها الخلوية وآثارها السريرية لا تزال غير معروفة إلى حد كبير. وبالتالي ، فإن توافر إمدادات من LLECs أمر ضروري لإجراء البحوث الوظيفية في المختبر. ومع ذلك ، لا يوجد حاليا بروتوكول قائم لحصاد وزراعة LLECs في المختبر.
نجحت هذه الدراسة في حصاد LLECs باستخدام بروتوكول متعدد الخطوات ، والذي تضمن طلاء القارورة بالفبرونيكتين ، وتشريح الليبتومينيات بمساعدة المجهر ، وهضم الليبتومينيات إنزيميا لإعداد تعليق أحادي الخلية ، مما يؤدي إلى توسع LLECs مع عامل نمو بطانة الأوعية الدموية C (VEGF-C) ، واختيار الخلايا الإيجابية لمستقبلات الهيالورونيك للأوعية اللمفاوية -1 (LYVE-1) من خلال فرز الخلايا المنشط مغناطيسيا (MACS). أدت هذه العملية في النهاية إلى إنشاء ثقافة أولية. تم تأكيد نقاء LLECs من خلال تلطيخ التألق المناعي وتحليل التدفق الخلوي ، مع مستوى نقاء يتجاوز 95٪. وقد أثبت هذا البروتوكول متعدد الخطوات قابلية التكرار والجدوى ، مما سيسهل إلى حد كبير استكشاف الوظيفة الخلوية والآثار السريرية ل LLECs.
تشكل الخلايا البطانية اللمفاوية المكتشفة حديثا (LLECs) شبكة من الخلايا الفردية داخل leptomeninges ، وتظهر نمط توزيع متميز عند مقارنتها بالخلايا البطانية اللمفاوية المحيطية 1,2. لا تزال الوظائف الخلوية والآثار السريرية المرتبطة ب LLECs منطقة مجهولة إلى حد كبير. من أجل تمهيد الطريق للبحث الوظيفي على LLECs ، من الضروري إنشاء نموذج في المختبر لدراستهم. لذلك ، ابتكرت هذه الدراسة بروتوكولا شاملا للعزل والثقافة الأولية ل LLECs.
الفئران هي النموذج الحيواني المفضل بسبب ملاءمتها للتلاعب الجيني في أبحاث الأمراض. نجحت الدراسات السابقة في عزل الخلايا البطانية اللمفاوية من أنسجة الفئران المختلفة ، بما في ذلك الغدد الليمفاوية3 ، والأنسجة المساريقية4 ، والأنسجة الجلدية5 ، وجمع اللمفاويات6 ، وأنسجة الرئة7. اعتمدت إجراءات العزل هذه بشكل أساسي على تقنيات مثل فرز الخلايا المنشطة مغناطيسيا (MACS) وفرز قياس التدفق الخلوي8،9،10. بالإضافة إلى ذلك ، أدت الجهود البحثية إلى إنشاء خطوط الخلايا العنكبوتية للفئران وخطوط الخلايا الشعرية اللمفاوية للفئران11,12. على الرغم من وجود تقنيات الاستزراع الخارجي ل leptomeninges13 ، إلا أن هناك حاجة ملحة لبروتوكول موحد لعزل وزراعة LLECs. وبالتالي ، نجحت هذه الدراسة في حصاد وزراعة LLECs من خلال فصل leptomeninges بدقة تحت إشراف المجهر وتعزيز توسع LLECs من خلال استخدام عامل نمو بطانة الأوعية الدموية C (VEGF-C). العلامة المميزة للخلايا البطانية اللمفاوية هي مستقبلات الهيالورونيك للأوعية اللمفاوية -1 (LYVE-1) 14. يقوم هذا البروتوكول متعدد الخطوات بعزل LLECs الإيجابية LYVE-1 بشكل انتقائي باستخدام MACS ويتحقق لاحقا من نقائها من خلال التحليل الخلوي للتدفق وتلطيخ الفلورسنت المناعي.
يمكن تلخيص الخطوات الأساسية لهذا البروتوكول متعدد الخطوات على النحو التالي: طلاء القارورة ، تفكك leptomeninges ، الهضم الأنزيمي لل leptomeninges ، توسع الخلايا ، اختيار الخلايا المغناطيسية ، والثقافة اللاحقة ل LLECs. أخيرا ، يتم تأكيد نقاء LLECs المعزولة من خلال تحليل التدفق الخلوي وتلطيخ الفلورسنت المناعي. الهدف الشامل من هذه الدراسة هو تقديم بروتوكول قابل للتكرار ومتعدد الخطوات لعزل LLECs من leptomeninges الفئران وثقافتها اللاحقة في المختبر . هذا البروتوكول مهيأ لتسهيل التحقيقات بشكل كبير في الوظائف الخلوية والآثار السريرية ل LLECs.
لم يتم الإبلاغ من قبل عن البروتوكول الحالي لحصاد واستزراع LLECs في المختبر . تقدم هذه الدراسة بروتوكولا متعدد الإجراءات قابل للتكرار لحصاد وزراعة LLECs من leptomeninges الفئران.
في حين أن هذا البروتوكول متعدد الإجراءات قابل للتكرار ، إلا أن هناك العديد من الاعتبارات الرئيسية. على…
The authors have nothing to disclose.
تم دعم الدراسة بمنح من المؤسسة الوطنية للعلوم الطبيعية في الصين (81960226 ، 81760223) ، ومؤسسة العلوم الطبيعية في مقاطعة يونان (202001AS070045 ، 202301AY070001-011) ، ومؤسسة البحث العلمي التابعة لوزارة التعليم بمقاطعة يوننان (2023Y0784).
Block buffer | Beyotime | P0102 | Store aliquots at –4 °C |
Collagenase I | Solarbio | C8140 | Store aliquots at –20 °C |
DAPI | Beyotime | P0131 | Store aliquots at –20 °C |
DMEM | Solarbio | 11995 | Store aliquots at –4 °C |
D-PBS | Solarbio | D1041 | Store aliquots at –4 °C |
EGM-2 MV Bullet Kit | Lonza | C-3202 | Store aliquots at –4 °C |
FBS | Solarbio | S9010 | Store aliquots at –20 °C |
Fibronectin | Solarbio | F8180 | Store aliquots at –20 °C |
FlowJo Software | BD Biosciences | V10.8.1 | |
LYVE-1 antibody | eBioscience | 12-0443-82 | Store aliquots at –4 °C |
Magnetic separator | Miltenyi | 130-042-302 | Sterile before use |
Magnetic separator stand | Miltenyi | 130-042-303 | Sterile before use |
Microbeads | Miltenyi | 130-048-801 | Store aliquots at –4 °C |
P/S | Solarbio | P1400 | Store aliquots at –20 °C |
Papain | Solarbio | G8430-25g | Store aliquots at –20 °C |
PBS | Solarbio | D1040 | Store aliquots at –4 °C |
PDPN antibody | Santa | sc-53533 | Store aliquots at –4 °C |
PFA | Solarbio | P1110 | Store aliquots at –4 °C |
PROX1 antibody | Santa | sc-81983 | Store aliquots at –4 °C |
Selection column | Miltenyi | 130-042-401 | Sterile before use |
Trypsin | Gibco | 25200072 | Store aliquots at –20 °C |
VEGF-C | Abcam | ab51947 | Store aliquots at –20 °C |
VEGFR-3 antibody | Santa | sc-514825 | Store aliquots at –4 °C |