El protocolo descrito en este artículo utiliza la técnica de histograma de gradiente direccional para extraer las características de muestras de imágenes concretas bajo varios estados de vibración. Emplea una máquina de vectores de soporte para el aprendizaje automático, lo que da como resultado un método de reconocimiento de imágenes con requisitos mínimos de muestra de entrenamiento y bajas demandas de rendimiento informático.
En este artículo, se emplea la tecnología de histograma de gradiente direccional para extraer las características de muestras de imágenes concretas capturadas bajo diferentes estados de vibración. La máquina de vectores de soporte (SVM) se utiliza para aprender la relación entre las características de la imagen y el estado de vibración. Los resultados del aprendizaje automático se utilizan posteriormente para evaluar la viabilidad del estado de vibración del hormigón. Simultáneamente, se analiza el mecanismo de influencia de los parámetros de cálculo del histograma de gradiente direccional en la precisión del reconocimiento. Los resultados demuestran la viabilidad de utilizar la tecnología de histograma de gradiente direccional-SVM para identificar el estado de vibración del hormigón. La precisión del reconocimiento aumenta inicialmente y luego disminuye a medida que aumenta el tamaño del bloque del gradiente direccional o el número de intervalos estadísticos. La precisión del reconocimiento también disminuye linealmente con el aumento del umbral de binarización. Mediante el uso de imágenes de muestra con una resolución de 1024 píxeles x 1024 píxeles y la optimización de los parámetros de extracción de características, se puede lograr una precisión de reconocimiento del 100%.
El hormigón es un material de construcción fundamental muy utilizado en la industria de la construcción. Durante el bombeo, el hormigón con frecuencia desarrolla huecos que requieren compactación a través de la vibración. Una vibración inadecuada puede dar lugar a una superficie de hormigón en forma de panal, mientras que una vibración excesiva puede provocar la segregación del hormigón 1,2. La calidad de la operación de vibración afecta significativamente la resistencia 3,4,5,6 y la durabilidad de las estructuras de hormigón conformado 7,8. Cai et al.9,10 realizaron un estudio que combinó la investigación experimental con el análisis numérico para investigar el mecanismo de influencia de la vibración en el asentamiento de los áridos y la durabilidad del hormigón. Los hallazgos revelaron que el tiempo de vibración y las partículas agregadas ejercen un impacto sustancial en el asentamiento de agregados, mientras que la densidad agregada y la viscosidad plástica del material a base de cemento tienen efectos mínimos. La vibración provoca la deposición de agregados en la parte inferior de las muestras de hormigón. Además, a medida que aumenta el tiempo de vibración, la concentración de iones cloruro disminuye en la parte inferior de las probetas de hormigón, mientras que aumenta significativamente en la parte superior 9,10.
En la actualidad, la evaluación del estado de vibración del hormigón se basa principalmente en el juicio manual. A medida que la industria de la construcción continúa progresando a través de reformas inteligentes, las operaciones robóticas han surgido como la dirección futura11,12. En consecuencia, un desafío crucial en las operaciones de vibración inteligente es cómo permitir que los robots identifiquen el estado de vibración del hormigón.
El histograma del gradiente orientado es una técnica que utiliza el gradiente de intensidad de píxeles o la distribución de direcciones de borde como descriptor para caracterizar la representación y forma de los objetos en las imágenes 13,14. Este enfoque opera en las celdas de la cuadrícula local de la imagen, lo que proporciona una estabilidad sólida en la caracterización de los cambios de imagen en diversas condiciones geométricas y ópticas.
Zhou et al.15 propusieron un método para extraer directamente características de gradiente direccional de imágenes en modo Bayer. Este enfoque omite numerosos pasos en el cálculo del gradiente direccional al hacer coincidir la columna de filtro de color con el operador de gradiente, lo que reduce significativamente los requisitos computacionales para el reconocimiento de imágenes de gradiente direccional. He et al.16 utilizaron el histograma de gradiente direccional como característica subyacente y emplearon el algoritmo de agrupamiento de medias para clasificar los sujetadores de riel y determinar si los sujetadores están defectuosos. Los resultados del reconocimiento indicaron que el histograma de la característica de gradiente orientado exhibía una alta sensibilidad a los defectos de los sujetadores, satisfaciendo las necesidades de mantenimiento y reparación ferroviaria. En otro estudio, Xu et al.17 preprocesaron las características de las imágenes faciales utilizando el filtrado de ondículas de Gabor y redujeron la dimensión de los vectores de características a través de la codificación binaria y el algoritmo HOG. La precisión media de reconocimiento del método es del 92,5%.
La máquina de vectores de soporte (SVM)18 se utiliza para mapear el vector en un espacio de alta dimensión y establece un hiperplano de separación con una dirección adecuada para maximizar la distancia entre dos hiperplanos paralelos. Esto permite clasificar los vectores de soporte19. Los estudiosos han mejorado y optimizado esta tecnología de clasificación, lo que ha llevado a su aplicación en diversos campos, como el reconocimiento de imágenes20,21, la clasificación de texto22, la predicción de fiabilidad23 y el diagnóstico de fallos24.
Li et al.25 desarrollaron un modelo SVM de dos etapas para el reconocimiento de patrones de fallas sísmicas, centrándose en tres modos de fallas sísmicas. Los resultados del análisis indican que el método SVM de dos etapas propuesto puede lograr una precisión superior al 90% para los tres modos de fallo. Yang et al.26 integraron un algoritmo de optimización con el SVM para simular la relación entre los cinco parámetros ultrasónicos y la tensión del hormigón cargado. El rendimiento de una SVM no optimizada no es satisfactorio, especialmente en la etapa de bajo estrés. Sin embargo, recorrer el modelo optimizado por el algoritmo produce resultados mejorados, aunque con largos tiempos de cálculo. En comparación, la SVM optimizada para la optimización del enjambre de partículas reduce significativamente el tiempo de cálculo al tiempo que ofrece resultados de simulación óptimos. Yan et al.27 emplearon la tecnología SVM e introdujeron una función de pérdida insensible a la precisión para predecir el módulo elástico del hormigón de alta resistencia, comparando su precisión de predicción con el modelo de regresión tradicional y el modelo de red neuronal. Los resultados de la investigación demuestran que la tecnología SVM produce un error de predicción menor para el módulo elástico en comparación con otros métodos.
Este artículo recoge muestras de imágenes de hormigón bajo varios estados de vibración y describe los diferentes estados del hormigón utilizando la técnica de histograma de gradiente direccional. El gradiente direccional se emplea como un vector de características para entrenar el SVM, y el estudio se centra en la viabilidad de utilizar la tecnología de histograma de gradiente direccional-SVM para identificar el estado de vibración del hormigón. Además, el artículo analiza el mecanismo de influencia entre tres parámetros clave (umbral de binarización, tamaño de bloque estadístico de gradiente direccional y número de intervalo estadístico de gradiente direccional) en el proceso de extracción de características del histograma de gradiente direccional y la precisión de reconocimiento de la SVM.
Este artículo utiliza la máquina de vectores de soporte (SVM) para aprender las características de la imagen de varias muestras de estado de vibración del hormigón. Sobre la base de los resultados del aprendizaje automático, se propone un método concreto de reconocimiento del estado de vibración basado en el reconocimiento de imágenes. Para mejorar la precisión del reconocimiento, es crucial controlar los parámetros de los tres pasos clave: segmentación de imágenes, binarización de imágenes y extracción d…
The authors have nothing to disclose.
Agradecemos al Proyecto Anual de Investigación Científica (NO.7) del Grupo de Construcción Urbana de Wuhan 2023 por financiar este trabajo.
camera | SONY | A6000 | The sensor size is 23.5×15.6mm, the maximum acquisition resolution is 1440 * 1080, and the effective pixel is 24.3 million. |
concrete | Wuhan Construction Changxin Technology Development Co., Ltd. | C30 pumping concrete | According to the standard of ' concrete strength test and evaluation standard ' ( GB / T 50107-2010 ), the standard value of cubic compressive strength is 30 MPa pumping concrete. |
Matlab | MathWorks | Matlab R2017a | MATLAB's programming interface provides development tools for improving code quality maintainability and maximizing performance. It provides tools for building applications using custom graphical interfaces. It provides tools for combining MATLAB-based algorithms with external applications and languages |
Processor | Intel | 12th Gen Intel(R) Core (TM) i7-12700H @ 2.30GHz | 64-bit Win11 processor |