Summary

Распознавание изображений и анализ параметров вибрационного состояния бетона на основе метода опорных векторов

Published: January 05, 2024
doi:

Summary

Протокол, описанный в этой статье, использует метод направленной градиентной гистограммы для извлечения характеристик конкретных образцов изображений при различных вибрационных состояниях. Он использует метод опорных векторов для машинного обучения, что приводит к методу распознавания изображений с минимальными требованиями к обучающей выборке и низкими требованиями к производительности компьютера.

Abstract

В данной работе используется технология направленной градиентной гистограммы для извлечения особенностей образцов конкретных изображений, полученных при различных вибрационных состояниях. Метод опорных векторов (SVM) используется для изучения взаимосвязи между характеристиками изображения и вибрационным состоянием. Результаты машинного обучения впоследствии используются для оценки осуществимости вибрационного состояния бетона. Одновременно анализируется механизм влияния параметров расчета гистограммы направленного градиента на точность распознавания. Полученные результаты демонстрируют целесообразность использования технологии направленной градиентной гистограммы-SVM для определения вибрационного состояния бетона. Точность распознавания сначала увеличивается, а затем уменьшается по мере увеличения размера блока градиента направления или числа статистических интервалов. Точность распознавания также линейно снижается с увеличением порога бинаризации. Используя образцы изображений с разрешением 1024 x 1024 пикселей и оптимизируя параметры извлечения признаков, можно достичь 100% точности распознавания.

Introduction

Бетон является основным строительным материалом, широко используемым в строительной отрасли. Во время перекачки в бетоне часто образуются пустоты, которые требуют уплотнения за счет вибрации. Недостаточная вибрация может привести к образованию ячеистой бетонной поверхности, в то время как чрезмерная вибрация может привести к расслоению бетона 1,2. Качество вибрационной работы существенно влияет на прочность 3,4,5,6 и долговечность формируемых бетонных конструкций 7,8. Cai et al.9,10 провели исследование, в котором экспериментальные исследования сочетались с численным анализом для изучения механизма влияния вибрации на осадку заполнителя и долговечность бетона. Результаты показали, что время вибрации и частицы заполнителя оказывают существенное влияние на осадку заполнителя, в то время как плотность заполнителя и пластическая вязкость материала на основе цемента оказывают минимальное влияние. Вибрация вызывает отложение заполнителя на дне бетонных образцов. Кроме того, с увеличением времени вибрации концентрация ионов хлорида в нижней части бетонных образцов уменьшается, но значительно увеличиваетсяв верхней части 9,10.

В настоящее время оценка вибрационного состояния бетона основывается преимущественно на ручном суждении. По мере того, как строительная отрасль продолжает развиваться благодаря интеллектуальным реформам, роботизированные операции стали будущим направлением11,12. Следовательно, важнейшей проблемой в интеллектуальных вибрационных операциях является то, как роботы могут определять вибрационное состояние бетона.

Гистограмма ориентированного градиента – это метод, который использует градиент интенсивности пикселей или распределение направлений краев в качестве дескриптора для характеристики представления и формы объектов на изображениях13,14. Этот подход работает с локальными ячейками сетки изображения, обеспечивая робастную стабильность при характеризации изменений изображения в различных геометрических и оптических условиях.

Zhou et al.15 предложили метод прямого извлечения направленных градиентных объектов из изображений режима Байера. Этот подход позволяет пропустить множество шагов при вычислении направленного градиента путем сопоставления столбца цветового фильтра с оператором градиента, тем самым значительно снижая вычислительные требования для распознавания изображений направленного градиента. Он и др.16 использовали гистограмму направленного градиента в качестве базового признака и применили алгоритм кластеризации среднего значения для классификации рельсовых скреплений и определения того, являются ли скрепления дефектными. Результаты распознавания показали, что гистограмма объекта ориентированного градиента обладает высокой чувствительностью к дефектам крепежа, удовлетворяя потребности технического обслуживания и ремонта железных дорог. В другом исследовании Xu et al.17 провели предварительную обработку признаков изображения лица с помощью вейвлет-фильтрации Габора и уменьшили размерность векторов признаков с помощью двоичного кодирования и алгоритма HOG. Средняя точность распознавания метода составляет 92,5%.

Метод опорных векторов (SVM)18 используется для отображения вектора в многомерное пространство и устанавливает разделяющую гиперплоскость с подходящим направлением, чтобы максимизировать расстояние между двумя параллельными гиперплоскостями. Это позволяет классифицировать опорные векторы19. Ученые усовершенствовали и оптимизировали эту технологию классификации, что привело к ее применению в различных областях, таких как распознавание изображений20,21, классификация текста22, прогнозирование надежности23 и диагностика неисправностей24.

Li et al.25 разработали двухступенчатую SVM-модель для распознавания паттернов сейсмических разрушений, сосредоточив внимание на трех видах сейсмических разрушений. Результаты анализа свидетельствуют о том, что предложенный двухступенчатый метод SVM позволяет достичь более 90% точности для трех видов отказов. Yang et al.26 интегрировали алгоритм оптимизации с SVM для моделирования взаимосвязи между пятью ультразвуковыми параметрами и напряжением нагруженного бетона. Производительность неоптимизированной SVM неудовлетворительна, особенно на стадии низкого напряжения. Тем не менее, обход модели, оптимизированной алгоритмом, дает улучшенные результаты, хотя и с длительным временем вычислений. Для сравнения, SVM, оптимизированная для оптимизации роя частиц, значительно сокращает время расчета, обеспечивая при этом оптимальные результаты моделирования. Yan et al.27 использовали технологию SVM и ввели прецизионно-нечувствительную функцию потерь для прогнозирования модуля упругости высокопрочного бетона, сравнив точность ее предсказания с традиционной регрессионной моделью и моделью нейронной сети. Результаты исследования показывают, что технология SVM дает меньшую ошибку предсказания модуля упругости по сравнению с другими методами.

В данной работе собраны образцы изображений бетона при различных вибрационных состояниях и описаны различные состояния бетона с помощью метода направленной градиентной гистограммы. Направленный градиент используется в качестве вектора признаков для обучения SVM, и исследование фокусируется на целесообразности использования технологии направленной градиентной гистограммы-SVM для определения вибрационного состояния бетона. Кроме того, в работе анализируется механизм влияния между тремя ключевыми параметрами — порогом бинаризации, размером статистического блока направленного градиента и номером статистического интервала направленного градиента — в процессе извлечения признаков гистограммы направленного градиента и точностью распознавания SVM.

Protocol

1. Получение изображения конкретного образца Транспортируйте бетон к рабочему месту, где он будет заливаться автонасосом. Чтобы сделать снимок, включите съемочное оборудование, переместив выключатель питания вправо и повернув его в положение ON . Установит?…

Representative Results

Этот протокол направлен на анализ того, как трехвекторные параметры расчета элемента направленного градиента влияют на точность SVM в определении вибрационного состояния бетона. Основные параметры вычисления вектора признаков направленного градиента включают размер статистического…

Discussion

В данной работе используется метод опорных векторов (SVM) для изучения особенностей изображения различных образцов вибрационного состояния бетона. На основе результатов машинного обучения предложен метод распознавания конкретного вибрационного состояния, основанный на распознавани?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Мы с благодарностью благодарим Ежегодный научно-исследовательский проект (No7) Wuhan Urban Construction Group 2023 за финансирование этой работы.

Materials

camera SONY A6000 The sensor size is 23.5×15.6mm, the maximum acquisition resolution is 1440 * 1080, and the effective pixel is 24.3 million.
concrete Wuhan Construction Changxin Technology Development Co., Ltd. C30 pumping concrete According to the standard of ' concrete strength test and evaluation standard ' ( GB / T 50107-2010 ), the standard value of cubic compressive strength is 30 MPa pumping concrete.
Matlab MathWorks Matlab R2017a MATLAB's programming interface provides development tools for improving code quality maintainability and maximizing performance.
It provides tools for building applications using custom graphical interfaces.
It provides tools for combining MATLAB-based algorithms with external applications and languages
Processor  Intel 12th Gen Intel(R) Core (TM) i7-12700H @ 2.30GHz 64-bit Win11 processor 

References

  1. Jiang, L., Tian, Z., Wang, K., Sun, X. Estimating the segregation of concrete under vibration based on electrical method. Concrete. 1, 41-44 (2023).
  2. Ren, B., Ye, Z., Wang, D., Wu, B., Tan, Y. Evaluation of segregation degree of hardening concrete using improved Mask R-CNN. Journal of Hydroelectric Engineering. 41 (5), 93-102 (2022).
  3. Hu, J., Qin, M., Wang, H., Liu, K. Study on the influence of vibration frequency on the performance of concrete. Highway. 65 (12), 111-114 (2020).
  4. Bian, C., et al. Experimental study on characterization of evaluation indexes for vibration compaction of fresh concrete. Journal of Hydroelectric Engineering. 39 (2), 67-80 (2020).
  5. Liu, Z., Zhou, M., Bai, J., Mou, S. Influence of vibration time on the strength and homogeneity of rubber concrete. Industrial Construction. 42, 509-512 (2012).
  6. Cheng, Y., Gou, Z., Wang, Y. Testing Investigation on Effects of Mixing, Vibrating and Curing on Strength of High-Performance Concrete. Journal of Northeastern University (Natural Science). 31 (12), 1790-1793 (2010).
  7. Zhao, Y., Chen, S., Liu, Z. Influence mechanism of high-frequency vibration on concrete antifreeze and application in construction of tunnels in cold regions. Industrial Construction. 44 (5), 101-105 (2014).
  8. Quan, L., Tian, B., Li, S., He, Z., He, K. Evolution characteristics of flexural fatigue performance of dense concrete consolidated with high frequency vibration applied in airport pavement. Journal of Traffic and Transportation Engineering. 20 (2), 34-45 (2020).
  9. Cai, Y., et al. Influence of coarse aggregate settlement induced by vibration on long-term chloride transport in concrete: a numerical study. Materials and Structures. 55 (9), 1-18 (2022).
  10. Cai, Y., Liu, Q. F., Yu, L., Meng, Z., Avija, B. An experimental and numerical investigation of coarse aggregate settlement in fresh concrete under vibration. Cement and Concrete Composites. 122 (7), 104153 (2021).
  11. Wang, X., et al. Development and application of concrete vibrating robot system for high arch dam. Journal of Hydraulic Engineering. 53 (6), 631-654 (2022).
  12. Chen, C., Li, X., Qiu, Z., Yao, W., Zhu, H. Research Progress of Construction Robots. Journal of Architecture and Civil Engineering. 39 (4), 58-70 (2022).
  13. Shen, H., Zhang, W., Liu, J., Qiu, K. Development and Prospect of Construction Robots for High Rise Buildings. Construction Technology. 46 (8), 105-108 (2017).
  14. Dalal, N., Triggs, B. Histograms of Oriented Gradients for Human Detection. IEEE Computer Society Conference on Computer Vision & Pattern Recognition. , (2005).
  15. Zhou, W., et al. Gradient-based Feature Extraction From Raw Bayer Pattern Images. IEEE Transactions on Image Processing. (99), 1 (2021).
  16. He, B., et al. Railway Fastener Defects Detection under Various Illumination Conditions using Fuzzy C-Means Part Model. Transportation Research Record. 2675 (4), 271-280 (2021).
  17. Xu, X., Quan, C., Ren, F. Facial expression recognition based on Gabor Wavelet transform and Histogram of Oriented Gradients. IEEE International Conference on Mechatronics & Automation. , (2015).
  18. Cortes, C., Vapnik, V. N. Support Vector Networks. Machine Learning. 20 (3), 273-297 (1995).
  19. Burges, C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery. 2 (2), 121-167 (1998).
  20. Yang, C., et al. Identification of Pleurotus Ostreatus From Different Producing Areas Based on Mid-Infrared Spectroscopy and Machine Learning. Spectroscopy and Spectral Analysis. 43 (2), 577-582 (2023).
  21. Chaabane, S. B., et al. Face recognition based on statistical features and SVM classifier). Multimedia Tools and Applications. 81 (6), 8767-8784 (2022).
  22. Saleh, M. R., et al. Experiments with SVM to classify opinions in different domains. Expert Systems with Applications. 38 (12), 14799-14804 (2011).
  23. Zhang, Y., Liu, Y., Wang, J. Reliability Prediction of Coal Mine Water Disasters Emergency Rescue System Based on Improved SVM. Journal of Zhengzhou University (Engineering Science). 36 (3), 115-119 (2015).
  24. Cao, Y., Song, D., Hu, X., Sun, Y. Fault Diagnosis of Railway Point Machine Based on Improved Time-Domain Multiscale Dispersion Entropy and Support Vector Machine. Acta Electronica Sinica. 51 (1), 117-127 (2023).
  25. Li, Q., Yuze, C., Yu, B., Ning, C. Two-stage support vector machine method for failure mode classification of reinforced concrete columns. Engineering Mechanics. 39 (2), 148-158 (2022).
  26. Yang, Y., Zhang, W., Yu, H., Chai, W., Liu, D. Analysis on the relationships between ultrasonic parameters and the stress state in loaded concrete based on improved support vector machines). Journal of Vibration and Shock. 42 (2), 175-224 (2023).
  27. Yan, K., Shi, C. Prediction of elastic modulus of normal and high strength concrete by support vector machine. Construction & Building Materials. 24 (8), 1479-1485 (2010).
  28. Hussein, I. J., et al. Fully-automatic identification of gynaecological abnormality using a new adaptive frequency filter and histogram of oriented gradients (HOG). Expert Systems. 39 (3), 12789 (2022).
  29. Chandrakala, M., Devi, P. D. Two-stage classifier for face recognition using HOG features. Materials Today: Proceedings. 47, 5771-5775 (2021).
  30. Long, C., Yichi, Z., Zhangkai, L., Dandan, D. Low-Light Image Enhancement Based on RAW Domain Image. Journal of Computer-Aided Design & Computer Graphics. 35 (2), 303-311 (2023).
  31. Wang, X., et al. Development and application of concrete vibrating robot system for high arch dam. Journal of Hydraulic Engineering. 53 (6), 631-654 (2022).

Play Video

Cite This Article
Wang, S., Wang, A., Fu, X., Wu, K., Lu, T. Image Recognition and Parameter Analysis of Concrete Vibration State Based on Support Vector Machine. J. Vis. Exp. (203), e65731, doi:10.3791/65731 (2024).

View Video