Summary

Purificación por afinidad de una enzima fibrinolítica de Sipunculus nudus

Published: June 02, 2023
doi:

Summary

Aquí, presentamos un método de purificación de afinidad de una enzima fibrinolítica de Sipunculus nudus que es simple, económico y eficiente.

Abstract

La enzima fibrinolítica de Sipunculus nudus (sFE) es un nuevo agente fibrinolítico que puede activar el plasminógeno en plasmina y degradar la fibrina directamente, mostrando grandes ventajas sobre los agentes trombolíticos tradicionales. Sin embargo, debido a la falta de información estructural, todos los programas de purificación para sFE se basan en purificaciones por cromatografía de varios pasos, que son demasiado complicadas y costosas. Aquí, se desarrolla por primera vez un protocolo de purificación de afinidad de sFE basado en una estructura cristalina de sFE; incluye la preparación de la muestra cruda y la columna de cromatografía de afinidad de la matriz lisina/arginina-agarosa, la purificación de afinidad y la caracterización del sFE purificado. Siguiendo este protocolo, un lote de sFE se puede purificar en 1 día. Además, la pureza y la actividad del sFE purificado aumentan a 92% y 19,200 U/mL, respectivamente. Por lo tanto, este es un enfoque simple, económico y eficiente para la purificación de sFE. El desarrollo de este protocolo es de gran importancia para la utilización posterior de sFE y otros agentes similares.

Introduction

La trombosis es una amenaza importante para la salud pública, especialmente después de la pandemia mundial de Covid-19 1,2. Clínicamente, muchos activadores del plasminógeno (AP), como el activador del plasminógeno de tipo tisular (tPA) y la uroquinasa (Reino Unido), se han utilizado ampliamente como fármacos trombolíticos. Los PA pueden activar el plasminógeno de los pacientes en plasmina activa para degradar la fibrina. Así, su eficiencia trombolítica está fuertemente restringida por el estado plasminógeno de los pacientes 3,4. Los agentes fibrinolíticos, como la metaloproteinasa plasmina y la serina plasmina, son otro tipo de fármaco trombolítico clínico que también incluye enzimas fibrinolíticas (FE) como la plasmina, que pueden disolver los coágulos directamente, pero son rápidamente inactivados por varios inhibidores de la plasmina5. Posteriormente, se ha informado de un nuevo tipo de agente fibrinolítico que puede disolver el trombo no solo activando el plasminógeno en plasmina, sino también degradando la fibrina directamente 6-la enzima fibrinolítica del antiguo gusano del maní Sipunculus nudus (sFE)6. Esta bifunción otorga a sFE otras ventajas sobre los fármacos trombolíticos tradicionales, especialmente en términos de estado anormal del plasminógeno. En comparación con otros agentes fibrinolíticos bifuncionales 7,8,9, la sFE muestra varias ventajas, incluida la seguridad, sobre los agentes no derivados de alimentos para el desarrollo de fármacos, especialmente para medicamentos orales. Esto se debe a que la bioseguridad y biocompatibilidad de Sipunculus nudus han sido bien establecidas10.

Al igual que los otros agentes fibrinolíticos naturales aislados de microorganismos, lombrices de tierra y hongos, la purificación de sFE de S. nudus es muy complicada e incluye múltiples etapas, como homogeneización tisular, precipitación de sulfato de amonio, desalinización, cromatografía de intercambio aniónico, cromatografía de interacción hidrofóbica y tamizado molecular10,11,12. Tal sistema de purificación no solo depende de habilidades competentes y materiales costosos, sino que también requiere varios días para completar todo el procedimiento. Por lo tanto, un programa simple de purificación de sFE es de gran importancia para el desarrollo posterior de sFE. Afortunadamente, dos cristales de sFE (PDB: 8HZP; PDB: 8HZO) se han obtenido con éxito (ver Archivo Suplementario 1 y Archivo Suplementario 2). A través del análisis estructural y los experimentos de acoplamiento molecular, encontramos que el núcleo catalítico de sFE podría unirse específicamente a objetivos que contienen residuos de arginina o lisina.

Aquí, se propuso por primera vez un sistema de purificación de afinidad, basado en la estructura cristalina de sFE. Siguiendo este protocolo, la sFE altamente pura y altamente activa podría purificarse a partir de los extractos crudos en una sola etapa de purificación de afinidad. El protocolo desarrollado aquí no solo es importante para la preparación a gran escala de sFE, sino que también se puede aplicar para la purificación de otros agentes fibrinolíticos.

Protocol

1. Preparación Tratamiento de la muestraDiseccionar cuidadosamente S. nudus fresco (100 g) y recoger el intestino y su líquido interno. Añadir 300 ml de tampón Tris-HCl (0,02 M, pH 7,4) para homogeneización (1.000 rpm, 60 s). Congelar-descongelar el homogeneizado 3x. Centrifugar la muestra (10.956 × g, 0,5 h, 4 °C) y recoger el sobrenadante. Conservar la muestra a 4 °C hasta su uso posterior. Precipitación…

Representative Results

Siguiendo este protocolo, se extrajeron lisados tisulares crudos, se construyeron columnas de cromatografía de afinidad de matriz de arginina-agarosa y matriz de lisina-agarosa, se obtuvo sFE purificado y se midió la pureza y actividad fibrinolítica del sFE purificado mediante placas SDS-PAGE y fibrina, respectivamente. Después de la centrifugación, el sobrenadante recogido era un líquido viscoso de color canela transparente. La precipitación comenzó cuando este sobrenadante se mezcló…

Discussion

Debido a la falta de disponibilidad de la secuencia génica exacta de sFE, la sFE utilizada actualmente se extrajo de S. nudus14 fresco. Además, los procedimientos de purificación de sFE descritos en la literatura fueron complicados y costosos, ya que se basaron en algunas características generales de sFE, como el peso molecular, el punto isoeléctrico, la fuerza iónica y la polaridad15,16. Hasta la fecha no se ha informado de…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Esta investigación fue financiada por la Oficina de Ciencia y Tecnología de la ciudad de Xiamen (3502Z20227197) y la Oficina de Ciencia y Tecnología de la Provincia de Fujian (No. 2019J01070, No.2021Y0027).

Materials

30% Acrylamide-Bisacrylamide (29:1) Biosharp
2-Mercaptoethanol Solarbio
Agarose G-10 Biowest
Ammonium persulfate SINOPHARM
Ammonium sulfate SINOPHARM
Arginine-Sepharose 4B Solarbio Arginine-agarose matrix
Bromoxylenol Blue (BPB) Solarbio
Fast Silver Stain Kit Beyotime
Fibrinogen Merck
Glycine Solarbio
Hydrochloric acid SINOPHARM
Kinase RHAWN
Lysine-Sepharose 4B Solarbio Lysine-agarose matrix
N,N,N',N'-Tetramethylethylenediamine (TEMED) Sigma-Aldrich
Prestained Color Protein Marker (10-170 kD) Beyotime
Sodium chloride SINOPHARM
Sodium Dodecyl Sulfonate (SDS) Sigma-Aldrich
Sodium hydroxide SINOPHARM
Thrombin Meilunbio
Tris(Hydroxymethyl) Aminomethane Solarbio
Tris(Hydroxymethyl) Aminomethane Hydrochloride Solarbio
Equipment
AKT Aprotein Purification System pure GE
Automatic Vertical Pressure Steam Sterilizer MLS-3750 SANYO
Chemiluminescence Imaging System GE
Constant Flow Pump BT-100 QITE
Constant Temperature Incubator JINGHONG
Desktop Refrigerated Centrifuge 3-30KS SIGMA
DHG Series Heating and Drying Oven DGG-9140AD SENXIN
Electric Glass Homogenizer DY89-II SCIENTZ
Electronic Analytical Balance DENVER
Electro-Thermostatic Water Bath DK-S12 SENXIN
Horizontal Decolorization Shaker Kylin-Bell
Ice Machine AF 103 Scotsman
KQ-500E Ultrasonic Cleaner ShuMei
Magnetic Stirrer Zhi wei
Micro Refrigerated Centrifuge H1650-W Cence
Microwave Oven Galanz
Milli-Q Reference Millipore
Pipettor Thermo Fisher Scientific
Precision Desktop pH Meter Sartorious
Small-sized Vortex Oscillator Kylin-Bell
Vertical Electrophoresis System Bio-Rad
Consumable Material 
200 µL PCR Tube (200 µL) Axygene
Centrifuge Tube (1.5 mL) Biosharp
Centrifuge Tube (5 mL) Biosharp
Centrifuge Tube (50 mL) NEST
Centrifuge Tube (7 mL) Biosharp
Culture Dish (60 mm) NEST
Filter Membrane (0.22 µm) Millex GP
Parafilm Bemis
Pipette Tip (1 mL ) KIRGEN
Pipette Tip (10 µL) Axygene
Pipette Tip (200 µL) Axygene
Special Indicator Paper TZAKZY
Ultra Centrifugal Filter Unit (15 mL 3 KDa) Millipore
Ultra Centrifugal Filter Unit (4 mL 3 KDa) Millipore
Universal pH Indicator SSS Reagent

References

  1. Rosell, A., et al. Patients with COVID-19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality-brief report. Arteriosclerosis, Thrombosis, and Vascular Biology. 41 (2), 878-882 (2021).
  2. Schultz, N. H., et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. The New England. Journal of Medicine. 384 (22), 2124-2130 (2021).
  3. von Kaulla, K. N. Urokinase-induced fibrinolysis of human standard clots. Nature. 184 (4695), 1320-1321 (1959).
  4. Van de Werf, F., et al. Coronary thrombolysis with tissue-type plasminogen activator in patients with evolving myocardial infarction. The New England Journal of Medicine. 310 (10), 609-613 (1984).
  5. Schaller, J., Gerber, S. S. The plasmin-antiplasmin system: structural and functional aspects. Cellular and Molecular Life Sciences. 68 (5), 785-801 (2011).
  6. Ge, Y. -. H., et al. A novel antithrombotic protease from marine worm Sipunculus nudus. International Journal of Molecular Sciences. 19 (10), 3023 (2018).
  7. Liu, X., et al. Purification and characterization of a novel fibrinolytic enzyme from culture supernatant of Pleurotus ostreatus. Journal of Microbiology and Biotechnology. 24 (2), 245-253 (2014).
  8. Choi, J. -. H., Sapkota, K., Kim, S., Kim, S. -. J. Starase: A bi-functional fibrinolytic protease from hepatic caeca of Asterina pectinifera displays antithrombotic potential. Biochimie. 105, 45-57 (2014).
  9. Liu, H., et al. A novel fibrinolytic protein From Pheretima vulgaris: purification, identification, antithrombotic evaluation, and mechanisms investigation. Frontiers in Molecular Biosciences. 8, 772419 (2022).
  10. Wu, Y., et al. Antioxidant, hypolipidemic and hepatic protective activities of polysaccharides from Phascolosoma esculenta. Marine Drugs. 18 (3), 158 (2020).
  11. . Preparation and application of natural fibrinolytic enzyme from peanut worm Available from: https://patents.google.com/patent/CN109295042A/en (2019)
  12. Li, W., Yuan, M., Wu, Y., Xu, R. Identification of genes expressed differentially in female and male gametes of Sipunculus nudus. Aquaculture Research. 51 (9), 3780-3789 (2020).
  13. Ossipow, V., Laemmlii, U. K., Schibler, U. A simple method to renature DNA-binding proteins separated by SDS-polyacrylamide gel electrophoresis. Nucleic Acids Research. 21 (25), 6040-6041 (1993).
  14. Hsu, T., Ning, Y., Gwo, J., Zeng, Z. DNA barcoding reveals cryptic diversity in the peanut worm Sipunculus nudus. Molecular Ecology Resources. 13 (4), 596-606 (2013).
  15. Abiko, Y., Iwamoto, M., Shimizu, M. Plasminogen-plasmin system. I. Purification and properties of human plasminogen. The Journal of Biochemistry. 64 (6), 743-750 (1968).
  16. Abiko, Y., Iwamoto, M., Shimizu, M. Plasminogen-plasmin system. II. Purification and properties of human plasmin. The Journal of Biochemistry. 64 (6), 751-757 (1968).
  17. Wiman, B. Affinity-chromatographic purification of human α2-antiplasmin. The Biochemical Journal. 191 (1), 229-232 (1980).
  18. Sandbjerg Hansen, M., Clemmensen, I. Partial purification and characterization of a new fast-acting plasmin inhibitor from human platelets. Evidence for non-identity with the known plasma proteinase inhibitors. The Biochemical Journal. 187 (1), 173-180 (1980).
  19. Pietrocola, G., Rindi, S., Nobile, G., Speziale, P. Purification of human plasma/cellular fibronectin and fibronectin fragments. Fibrosis. 1627, 309-324 (2017).
  20. Nabiabad, H. S., Yaghoobi, M. M., Javaran, M. J., Hosseinkhani, S. Expression analysis and purification of human recombinant tissue type plasminogen activator (rt-PA) from transgenic tobacco plants. Preparative Biochemistry and Biotechnology. 41 (2), 175-186 (2011).
  21. Shearin, T. V., Pizzo, S. V., Gonzalez-Gronow, M. Molecular abnormalities of human plasminogen isolated from synovial fluid of rheumatoid arthritis patients. Journal of Molecular Medicine. 75 (5), 378-385 (1997).

Play Video

Cite This Article
Tang, M., Lin, H., Hu, C., Yan, H. Affinity Purification of a Fibrinolytic Enzyme from Sipunculus nudus. J. Vis. Exp. (196), e65631, doi:10.3791/65631 (2023).

View Video