Summary

使用均质化和微波辅助湿酸消解制备食品样品,用于ICP-MS多元素测定

Published: December 22, 2023
doi:

Summary

所提出的方案描述了使用实验室混合器进行样品均质化,通过微波辅助湿酸消解使用68wt%HNO3和30wt%H2O2的混合物对食品样品进行酸消解,以及使用电感耦合等离子体质谱法进行多元素测定。 

Abstract

样品制备对于元素测定至关重要,并且有多种技术可供选择,其中一种技术涉及均质化,然后是酸消解。在制备阶段的样品处理过程中需要特别小心,以消除或尽量减少潜在的污染和分析物损失。均质化是一种同时减小粒径和均匀分布样品组分的过程。均质化后,样品进行酸消解,其中在高温下用酸和辅助化学品消解,将固体样品转化为液态。在这个过程中,原始样品中的金属与酸反应形成水溶性盐。通过酸消解制备的样品适用于使用电感耦合等离子体质谱法、电感耦合等离子体发射光谱法、原子吸收光谱法、电化学方法和其他分析技术进行元素分析。这项工作详细介绍了使用电感耦合等离子体质谱法制备用于多元素测定的食品样品。分步程序包括使用带有陶瓷刀片的实验室大小的混合器进行均质化过程,然后使用微波辅助湿酸消解在密闭容器中进行酸消解。5.0 mL 68 wt% HNO3 和 1.0 mL 30 wt% H2O2 的混合物用作辅助试剂。本指南对这两个阶段所涉及的过程进行了说明。

Introduction

元素分析是确定各种样品元素组成的分析过程。它可用于控制人体中金属(尤其是重金属1)的摄入量,因为它们的高浓度可能会导致不必要的健康问题。重金属也是主要的环境污染物之一,因此,控制它们在环境中的存在是必要的2.此外,元素分析可用于确定食品的地理来源3 ,并控制食物和水资源的质量4。此外,它还用于测定土壤中的微量和宏量营养素5 ,并通过检查矿物和沉积物的化学成分6 来深入了解整个历史的地质过程。还进行了研究,以确定电气和电子废物中稀有金属的存在,以便进一步进行金属再生7,评估药物治疗的成功8,并验证金属植入物的元素组成9

电感耦合等离子体质谱法 (ICP-MS) 和电感耦合等离子体发射光谱法 (ICP-OES) 是用于各种样品元素分析的常用技术10。它们可以同时测定多种元素,检测限 (LOD) 和定量限 (LOQ) 低至 ng/L。一般来说,与 ICP-OES12 相比,ICP-MS 具有更低的 LOD 值11 和更宽的线性浓度范围。测定元素组成的其他技术是微波诱导等离子体发射光谱法13和原子吸收光谱法(AAS)的几种变体,包括火焰原子吸收光谱法、电热原子吸收光谱法2、冷蒸气原子吸收光谱法和氢化物产生原子吸收光谱法14.此外,使用不同的电分析方法可以进行低LOD和LOQ的元素测定,特别是阳极剥离伏安法15,16。当然,还有其他方法可以确定样品的元素组成,但它们不像上述方法那样经常使用。

使用激光诱导击穿光谱和 X 射线荧光17 对固体样品进行直接元素测定是可行的。然而,对于使用 ICP-MS、ICP-OES 和 AAS 进行元素测定,必须将固体样品转化为液态。为此,使用酸和辅助试剂(在大多数情况下是H2O2)进行酸消解。酸消解在高温和高压下进行,将样品的有机部分转化为气态产物,并将金属元素转化为水溶性盐,从而将它们溶解在溶液中18

酸消解主要有两种类型,开血管消解和闭合容器消解。开式容器消解具有成本效益14 ,但有局限性,例如最高消解温度,它与常压下酸的沸腾温度一致。样品可以在热板、加热块、水浴、砂浴2和微波19上加热。通过以这种方式加热样品,产生的大部分热量会损失到周围环境20中,从而延长消解时间14。开式容器消解的其他缺点包括更大的化学品消耗量,来自周围环境的污染的可能性更大,以及由于挥发性组分的形成及其从反应混合物中蒸发而可能损失分析物21

与开放式容器系统相比,封闭容器系统更便于有机和无机样品的消解。密闭容器系统利用各种能源来加热样品,例如传导加热和微波22。使用微波的消解方法包括微波诱导燃烧23、单反应室系统24和常用的微波辅助湿酸消解(MAWD)25,26。MAWD 允许在更高的工作温度下进行消解,范围在 220 °C 和 260 °C 之间,最大压力高达 200 bar,具体取决于仪器的工作条件27

MAWD的效率和速率取决于几个因素,包括样品的化学成分,最高温度,温度梯度,反应容器中的压力,添加的酸的量和所用酸的浓度28。在 MAWD 中,由于与开放式容器系统中更持久的消解相比,反应条件升高,可以在几分钟内实现完全的酸消解。MAWD 中需要较低的酸的体积和浓度,这符合当前的绿色化学指南29。在MAWD中,与开血管消解相比,需要较少量的样品进行酸消解,通常高达500mg的样品就足够了30,31,32。可以消化较大数量的样品,但它们需要更多的化学品。

由于 MAWD 仪器自动控制反应条件,并且人在加热过程中不会直接接触化学品,因此 MAWD 比开放式容器消解更安全。但是,在向反应容器中添加化学物质时,该人应始终谨慎行事,以防止它们与身体接触并造成伤害。反应容器也需要缓慢打开,因为在酸消解过程中,反应容器内部的压力会积聚。

虽然酸消解是制备用于元素测定的样品的有用技术,但执行该技术的人员应了解其可能的局限性。酸消解可能并不适合所有样品,尤其是那些具有复杂基质的样品以及那些反应性高或可能发生爆炸反应的样品。因此,应始终评估样品成分,以选择适当的化学品和反应条件,以便完全消解,从而溶解溶解溶液中所有所需元素。用户必须考虑并解决的其他问题是样品制备过程中每一步的杂质和分析物损失。酸消解必须始终按照特定规则或使用方案进行。

下面描述的方案提供了在实验室大小的混合器中对食品样品进行均质化的说明,清洁混合器组件、正确称量样品、添加化学品、通过 MAWD 进行酸消解、在消解完成后清洁反应容器、制备样品进行元素测定以及使用 ICP-MS 进行定量多元素测定的程序。按照以下说明,应该能够制备适合元素测定的样品并对消解样品进行测量。

Protocol

1.样品均质化 使用干净的陶瓷刀,手动将食物样品(西兰花、蘑菇、香肠和面条)切成小块,以加快干燥过程。准备足够的样品进行至少6次酸消解重复(确保干燥样品的最小质量为1500mg)。注意:增加样品的表面积会使样品的更大一部分暴露在加热的周围空气中,从而增加水的蒸发速度。 将样品放入250mL玻璃烧杯中,并使用干燥器在105°C下干燥至恒重。 从?…

Representative Results

均匀所有样品均用实验室干燥器干燥至恒定质量,以消除任何水分。将样品转移到干燥器中,使其冷却至室温,而不会结合周围环境的水分。然后使用实验室混合器将食品样品均质化,以获得细粉。所得均质颗粒大小均匀,分布均匀,确保用于酸消解的子样品(从较大样品中抽取的样品)具有代表性。在塑料刮刀的帮助下,样品很容易从混合烧杯中取出,但干肉样品除外,由于其?…

Discussion

均匀
为了确保元素测定结果的可重复性,由于样品的结构和组成复杂且不均匀,因此有必要在酸消解之前对样品进行均质化。同质化旨在消除宪法和分配的异质性。混合样品通过在整个样品中均匀地重新分配组分来最大限度地减少分布异质性。同样,通过将粒径降低到均匀的尺寸,可以减少结构异质性44。从匀浆中获得的子样品必须包含与原始样品相同的组分比?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢斯洛文尼亚研究机构的财政支持(批准号:P2-0414、P2-0118、J1-2470、NK-0001 和 J1-4416)。

Materials

Ar gas Messer 7440-37-1 Ar 5.0 gas (purity 99.999%).
AS-10 Autosampler system Shimadzu Autosampler connected to the ICP-MS, containing 68 ports for samples.
Automatic pipettes Sartorius 200 µL, 1 mL, and 5 mL automatic pipettes.
Balance XSE104 Mettler Toledo, Columbus, Ohio, USA Analytical balance scale with a maximum weighing mass of 120 g.
Ceramic knife Ceramic knife used for cutting fresh food samples.
Dessicator Glass desiccator with lumps of silica gel.
ETHOS LEAN Milestone, Sorisole, Italy Microwave system for wet acid digestion in closed 100 mL vessels made of TFM-PTFE.
Fume hood Laboratory fume hood with adjustable air flow.
Glass beakers RASOTHERM CarlRoth GmbH + Co.KG 50 mL, 250 mL glass beakers
Glass funnels Small glass funnels fitting into the neck of volumetric flasks.
He gas Messer 7440-59-7 He 5.0 gas (purity 99.999%).
Hydrogen peroxide ThermoFisher Scientific 7722-84-1 Hxdrogen peroxide 100 volumes 30 wt.% solution. Laboratory reagent grade.
ICP multi-element standard solution VIII Supelco 109492 100 mg/L ICP multi-element standard solution containing 24 elements (Al, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, Pb, Se, Sr, Te, Tl, Zn) in 2 % dilute nitric acid.
ICPMS 2030 Shimadzu Inductively coupled plasma mass spectrometry system for multi-element analysis of digested samples.
ICP-MS Tuning Solution A CarlRoth GmbH + Co.KG 250 mL tuning solution containing 6 elements (Be, Bi, Ce, Co, In, Mn) in 1 % nitric acid.
KIMTECH Purple Nitrile gloves Kimberly-Clark GmbH Disposable Purple Nitrile gloves (S, M or L).
Laboratory coat Any available supplier /
Mixer B-400 BÜCHI Labortechnik AG, Flawil, Switzerland Laboratory mixer with ceramic blades.
Nitric acid ThermoFisher Scientific 7697-37-2 Nitric acid, trace analysis grade, 68 wt%, density 1.42, Primar Plus, For Trace Metal Analysis.
Plastic centrifuge tubes Isolab 50 mL plastic centrifuge tubes with screw caps, single use.
Plastic syringes Injekt B. Braun 2 pice, single use 20 mL syringes.
Plastic tubes for autosampler Shimadzu 046-00147-04 Plastic tubes for autosampler, 15 mL capacity, 16 mm diameter, 100 mm length.
Plastic waste containers Plastic containers for the removal of chemicals after the cleaning procedure of reaction vessels.
Protective googles /
Samples (broccoli, sausage, noodles, zucchini, mushrooms) Fresh samples, which were dried to a constant weight and homogenized during the procedure. The samples were purchased from a local shop.
Spatula Plastic spatula.
Sterilizator Instrumentaria ST 01/02 Instrumentaria Dryer with adjustable temperature.
Syringe filters CHROMAFIL Xtra 729212 Syringe filters with polypropylene housing and polyamide hydrophilic membrane. Membrane diameter 25 mm, membrane pore size 0.2 µm.
Ultrapure water ELGA Labwater, Veolia Water Technologies. Ultrapure water with a resistivity of 18.2 MΩcm, obtained with laboratory water purification system.
Volumetric flasks 25 mL glass volumetric flasks.

References

  1. Catenza, K. F., Donkor, K. K. Determination of heavy metals in cannabinoid-based food products using microwave-assisted digestion and ICP-MS. Food Analytical Methods. 15, 2537-2546 (2022).
  2. Güven, D. E., Akinci, G. Comparison of acid digestion techniques to determine heavy metals in sediment and soil samples. Gazi University Journal of Science. 24, 29-34 (2011).
  3. Soós, &. #. 1. 9. 3. ;., Bódi, &. #. 2. 0. 1. ;., Várallyay, S., Molnár, S., Kovács, B. Microwave-assisted sample preparation of hungarian raw propolis in quartz vessels and element analysis by ICP-OES and ICP-MS for geographical identification. Talanta. 233, 122613 (2021).
  4. De Oliveira, A. F., Da Silva, C. S., Bianchi, S. R., Nogueira, A. R. A. The use of diluted formic acid in sample preparation for macro- and microelements determination in foodstuff samples using ICP-OES. Journal of Food Composition and Analysis. 66, 7-12 (2018).
  5. Moor, C., Lymberopoulou, T., Dietrich, V. J. Determination of heavy metals in soils, sediments and geological materials by ICP-AES and ICP-MS. Microchimica Acta. 136 (3), 123-128 (2001).
  6. Kuznetsova, O. V., Burmii, Z. P., Orlova, T. V., Sevastyanov, V. S., Timerbaev, A. R. Quantification of the diagenesis-designating metals in sediments by ICP-MS: Comparison of different sample preparation methods. Talanta. 200, 468-471 (2019).
  7. Buechler, D. T., et al. Comprehensive elemental analysis of consumer electronic devices: Rare earth, precious, and critical elements. Waste Management. 103, 67-75 (2020).
  8. Riisom, M., Gammelgaard, B., Lambert, I. H., Stürup, S. Development and validation of an ICP-MS method for quantification of total carbon and platinum in cell samples and comparison of open-vessel and microwave-assisted acid digestion methods. Journal of Pharmaceutical and Biomedical Analysis. 158, 144-150 (2018).
  9. Stricker, A., et al. Impurities in commercial titanium dental implants – a mass and optical emission spectrometry elemental analysis. Dental Materials. 38 (8), 1395-1403 (2022).
  10. Bressy, F. C., Brito, G. B., Barbosa, I. S., Teixeira, L. S. G., Korn, M. G. A. Determination of trace element concentrations in tomato samples at different stages of maturation by ICP-OES and ICP-MS following microwave-assisted digestion. Microchemical Journal. 109, 145-149 (2013).
  11. Lachas, H., et al. Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample sizes. Analyst. 124 (2), 177-184 (1999).
  12. Meermann, B., Nischwitz, V. ICP-MS for the analysis at the nanoscale-a tutorial review. Journal of Analytical Atomic Spectrometry. 33 (9), 1432-1468 (2018).
  13. Lemos, M. S., Dantas, K. G. F. Evaluation of the use of diluted formic acid in sample preparation for elemental determination in crustacean samples by mip oes. Biological Trace Element Research. 201 (7), 3513-3519 (2022).
  14. Mohammed, E., Mohammed, T., Mohammed, A. Optimization of acid digestion for the determination of hg, as, se, sb, pb and cd in fish muscle tissue. MethodsX. 4, 513-523 (2017).
  15. Sobhanardakani, S., Tayebi, L., Farmany, A., Cheraghi, M. Analysis of trace elements (cu, cd, and zn) in the muscle, gill, and liver tissues of some fish species using anodic stripping voltammetry. Environmental Monitoring and Assessment. 184 (11), 6607-6611 (2012).
  16. Ostapczuk, P., Valenta, P., Rützel, H., Nürnberg, H. Application of differential pulse anodic stripping voltammetry to the determination of heavy metals in environmental samples. Science of The Total Environment. 60, 1-16 (1987).
  17. Gamela, R. R., Costa, V. C., Sperança, M. A., Pereira-Filho, E. R. Laser-induced breakdown spectroscopy (libs) and wavelength dispersive x-ray fluorescence (wdxrf) data fusion to predict the concentration of k, mg and p in bean seed samples. Food Research International. 132, 109037 (2020).
  18. Hu, Z., Qi, L., Holland, H. D., Turekian, K. K. . Treatise on geochemistry (second edition). , 87-109 (2014).
  19. Ojeda, C. B., Rojas, F. S., Worsfold, P., Poole, C., Townshend, A., Miró, M. . Encyclopedia of analytical science (third edition). , 85-97 (2019).
  20. Bizzi, C. A., Nóbrega, J. A., Barin, J. S., Flores, &. #. 2. 0. 1. ;. M. d. M. . Microwave-assisted sample preparation for trace element analysis. , 179-204 (2014).
  21. Twyman, R. M., Worsfold, P., Townshend, A., Poole, C. . Encyclopedia of analytical science (second edition). , 146-153 (2005).
  22. Traversa, L. C., et al. Closed-vessel conductively heated digestion system for the elemental analysis of agricultural materials by high-resolution continuum source flame atomic absorption spectrometry (hr-cs faas). Analytical Letters. 56 (15), 2443-2456 (2023).
  23. Rondan, F. S. Determination of se and te in coal at ultra-trace levels by ICP-MS after microwave-induced combustion. Journal of Analytical Atomic Spectrometry. 34 (5), 998-1004 (2019).
  24. Muller, E. I., et al. Microwave-assisted wet digestion with H2O2 at high temperature and pressure using single reaction chamber for elemental determination in milk powder by ICP-OES and ICP-MS. Talanta. 156 – 157, 232-238 (2016).
  25. Pardinho, R. B., et al. Determination of toxic elements in yerba mate by ICP-MS after diluted acid digestion under O2 pressure. Food Chemistry. 263, 37-41 (2018).
  26. Barela, P. S., et al. Microwave-assisted digestion using diluted nitric acid for further trace elements determination in biodiesel by sf-ICP-MS. Fuel. 204, 85-90 (2017).
  27. Müller, E. I., Mesko, M. F., Moraes, D. P., Korn, M. D. G. A., Flores, &. #. 2. 0. 1. ;. M. M., Flores, &. #. 2. 0. 1. ;. M. d. M. . Microwave-assisted sample preparation for trace element analysis. , 99-142 (2014).
  28. Das, S., Ting, Y. -. P. Evaluation of wet digestion methods for quantification of metal content in electronic scrap material. Resources. 6 (4), 64 (2017).
  29. Nóbrega, J. A., et al. Microwave-assisted digestion of organic samples: How simple can it become. Talanta. 98, 272-276 (2012).
  30. Bizzi, C. A., et al. Evaluation of oxygen pressurized microwave-assisted digestion of botanical materials using diluted nitric acid. Talanta. 83 (5), 1324-1328 (2011).
  31. Da Silva, I. J. S., Lavorante, A. F., Paim, A. P. S., Da Silva, M. J. Microwave-assisted digestion employing diluted nitric acid for mineral determination in rice by ICP-OES. Food Chemistry. 319, 126435 (2020).
  32. Bizzi, C. A., Flores, E. M. M., Barin, J. S., Garcia, E. E., Nóbrega, J. A. Understanding the process of microwave-assisted digestion combining diluted nitric acid and oxygen as auxiliary reagent. Microchemical Journal. 99 (2), 193-196 (2011).
  33. Le Gresley, A., Ampem, G., De Mars, S., Grootveld, M., Naughton, D. P. 34;Real-world" evaluation of lipid oxidation products and trace metals in french fries from two chain fast-food restaurants. Frontiers in Nutrition. 8, 620952 (2021).
  34. Kutscher, D., Cui, J., Cojocariu, C. Key steps to create a sample preparation strategy for inductively coupled plasma (ICP) or ICP-mass spectrometry (ICP-MS) analysis. Spectroscopy. 37 (1), 38-42 (2022).
  35. Mccurdy, E., Proper, W. Improving ICP-MS analysis of samples containing high levels of total dissolved solids. Spectroscopy. 29 (11), 14 (2014).
  36. . Membrane filtration: How to choose the appropriate filter material for every sample Available from: https://www.cytivalifesciences.com/en/us/solutions/lab-filtration/knowledge-center/membrane-filtration-choosing-the-correct-type-of-filter (2023)
  37. May, T. W., Wiedmeyer, R. H. A table of polyatomic interferences in ICP-MS. Atomic Spectroscopy-Norwalk Connecticut. 19, 150-155 (1998).
  38. Taleuzzaman, M. Limit of blank (lob), limit of detection (lod), and limit of quantification (loq). Organic & Medicinal Chemistry International Journal. 7 (5), 127-131 (2018).
  39. Willner, J., et al. A versatile approach for the preparation of matrix-matched standards for la-ICP-MS analysis – standard addition by the spraying of liquid standards. Talanta. 256, 124305 (2023).
  40. Green, J. M. Peer reviewed: A practical guide to analytical method validation. Analytical Chemistry. 68 (9), 305A-309A (1996).
  41. Xu, J., et al. A critical view on spike recovery for accuracy evaluation of analytical method for medicinal herbs. Journal of Pharmaceutical and Biomedical Analysis. 62, 210-215 (2012).
  42. Massart, D. L., et al. . Handbook of chemometrics and qualimetrics: Part a. , (1998).
  43. UNOO. . Guidance for the validation of analytical methodology and calibration of equipment used for testing of illicit drugs in seized materials and biological specimens: A commitment to quality and continuous improvement. , (2009).
  44. Berben, G., et al. Guidelines for sample preparation procedures in GMO analysis. Publications Office of the European Union. EUR27021, JRC94042 (2014).
  45. Lacorte, S., Bono-Blay, F., Cortina-Puig, M., Pawliszyn, J. . Comprehensive sampling and sample preparation. , 65-84 (2012).
  46. Kaur, G. J., Orsat, V., Singh, A. An overview of different homogenizers, their working mechanisms and impact on processing of fruits and vegetables. Critical Reviews in Food Science and Nutrition. 63 (14), 2004-2017 (2021).
  47. Baudelaire, E. D., Bhandari, B., Bansal, N., Zhang, M., Schuck, P. . Handbook of food powders. , 132-149 (2013).
  48. Jung, H., Lee, Y. J., Yoon, W. B. Effect of moisture content on the grinding process and powder properties in food: A review. Processes. 6 (6), 69 (2018).
  49. Krejčová, A., Pouzar, M., Černohorský, T., Pešková, K. The cryogenic grinding as the important homogenization step in analysis of inconsistent food samples. Food Chemistry. 109 (4), 848-854 (2008).
  50. Balasubramanian, S., Gupta, M. K., Singh, K. Cryogenics and its application with reference to spice grinding: A review. Critical Reviews in Food Science and Nutrition. 52, 781-794 (2012).
  51. Potočnik, D., Jagodic Hudobivnik, M., Mazej, D., Ogrinc, N. Optimization of the sample preparation method for determination of multi-elemental composition in fruit samples by ICP-MS analysis. Measurement: Sensors. 18, 100292 (2021).
  52. DINEN ISO. . Theory of sample preparation using acid digestion, pressure digestion and microwave digestion (microwave decomposition). , (1972).
  53. Bizzi, C. A., Barin, J. S., Oliveira, J. S., Cravotto, G., Flores, E. M. Microwave-assisted oxidation of organic matter using diluted hno 3 under o 2 pressure: Rationalization of the temperature gradient effect for acid regeneration. Journal of the Brazilian Chemical Society. 28, 1673-1681 (2017).
  54. Castro, J. T., et al. A critical evaluation of digestion procedures for coffee samples using diluted nitric acid in closed vessels for inductively coupled plasma optical emission spectrometry. Talanta. 78 (4), 1378-1382 (2009).
  55. Ju, T., Han, S., Meng, Y., Song, M., Jiang, J. Occurrences and patterns of major elements in coal fly ash under multi-acid system during microwave digestion processes. Journal of Cleaner Production. 359, 131950 (2022).
  56. Matusiewicz, H. . Comprehensive analytical chemistry. 41, 193-233 (2003).
  57. Sheng, P. P., Etsell, T. H. Recovery of gold from computer circuit board scrap using aqua regia. Waste Management & Research. 25 (4), 380-383 (2007).
  58. Sucharova, J., Suchara, I. Determination of 36 elements in plant reference materials with different si contents by inductively coupled plasma mass spectrometry: Comparison of microwave digestions assisted by three types of digestion mixtures. Analytica Chimica Acta. 576, 163-176 (2006).
  59. Santos, H. M., et al. Microwave-assisted digestion using diluted HNO3 and H2O2 for macro and microelements determination in guarana samples by ICP-OES. Food Chemistry. 273, 159-165 (2019).
  60. Usepa, E. Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. United States Environmental Protection Agency, Washington, DC USA. , (1996).
  61. Elemental analysis manual, 4.7 inductively coupled plasma-mass spectrometric determination of arsenic, cadmium, chromium, lead, mercury, and other elements in food using microwave assisted digestion. Available from: https://s27415.pcdn.co/wp-content/uploads/2020/01/64ER20-7/Heavy_Metals/1-FDA-EAM-4.7-Inductively-Coupled-Plasma-MS-Determination-of-Arsenic-Cadmium-Chromium-Lead-Mercury-etc.pdf (2015)
  62. Leme, A. B. P., Bianchi, S. R., Carneiro, R. L., Nogueira, A. R. A. Optimization of sample preparation in the determination of minerals and trace elements in honey by ICP-MS. Food Analytical Methods. 7 (5), 1009-1015 (2014).
  63. Vanhoe, H., Goossens, J., Moens, L., Dams, R. Spectral interferences encountered in the analysis of biological materials by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry. 9, 177-185 (1994).
  64. Loula, M., Kaňa, A., Mestek, O. Non-spectral interferences in single-particle ICP-MS analysis: An underestimated phenomenon. Talanta. 202, 565-571 (2019).
  65. Muller, C. C. Feasibility of nut digestion using single reaction chamber for further trace element determination by ICP-OES. Microchemical Journal. 116, 255-260 (2014).
  66. Muller, A. L. H., Oliveira, J. S. S., Mello, P. A., Muller, E. I., Flores, E. M. M. Study and determination of elemental impurities by ICP-MS in active pharmaceutical ingredients using single reaction chamber digestion in compliance with usp requirements. Talanta. 136, 161-169 (2015).
  67. Duarte, F. A., et al. Microwave-induced combustion in disposable vessels: A novel perspective for sample digestion. Analytical Chemistry. 92 (12), 8058-8063 (2020).
  68. Novaes, C. G., et al. A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry (ICP-OES). Microchemical Journal. 128, 331-346 (2016).
  69. Damak, F., Asano, M., Baba, K., Ksibi, M., Tamura, K. Comparison of sample preparation methods for multielements analysis of olive oil by ICP-MS. Methods and Protocols. 2 (3), 72 (2019).
  70. Thomas, R. . Practical guide to ICP-MS: A tutorial for beginners. , (2013).
  71. Yamada, N. Kinetic energy discrimination in collision/reaction cell ICP-MS: Theoretical review of principles and limitations. Spectrochimica Acta Part B: Atomic Spectroscopy. 110, 31-44 (2015).
  72. The 30-minute guide to ICP-MS. Perkin Elmer, Shelton CT Available from: https://resources.perkinelmer.com/corporate/cmsresources/images/44-74849tch_icpmsthirtyminuteguide.pdf (2001)
  73. Gonzálvez, A., Armenta, S., Pastor, A., De La Guardia, M. Searching the most appropriate sample pretreatment for the elemental analysis of wines by inductively coupled plasma-based techniques. Journal of Agricultural and Food Chemistry. 56 (13), 4943-4954 (2008).
  74. Lum, T. -. S., Leung, K. . S. -. Y. Strategies to overcome spectral interference in ICP-MS detection. Journal of Analytical Atomic Spectrometry. 31 (5), 1078-1088 (2016).
  75. Agatemor, C., Beauchemin, D. Matrix effects in inductively coupled plasma mass spectrometry: A review. Analytica Chimica Acta. 706 (1), 66-83 (2011).
  76. Melaku, S., Dams, R., Moens, L. Determination of trace elements in agricultural soil samples by inductively coupled plasma-mass spectrometry: Microwave acid digestion versus aqua regia extraction. Analytica Chimica Acta. 543 (1), 117-123 (2005).

Play Video

Cite This Article
Rantaša, M., Majer, D., Finšgar, M. Preparation of Food Samples Using Homogenization and Microwave-Assisted Wet Acid Digestion for Multi-Element Determination with ICP-MS. J. Vis. Exp. (202), e65624, doi:10.3791/65624 (2023).

View Video