Le protocole décrit comment surveiller les événements électrochimiques sur des nanoparticules uniques à l’aide de la spectroscopie de diffusion Raman améliorée en surface et de l’imagerie.
L’étude des réactions électrochimiques sur des nanoparticules uniques est importante pour comprendre les performances hétérogènes des nanoparticules individuelles. Cette hétérogénéité à l’échelle nanométrique reste cachée lors de la caractérisation moyenne d’ensemble des nanoparticules. Des techniques électrochimiques ont été développées pour mesurer les courants de nanoparticules uniques, mais ne fournissent pas d’informations sur la structure et l’identité des molécules qui subissent des réactions à la surface de l’électrode. Les techniques optiques telles que la microscopie et la spectroscopie à diffusion Raman améliorée par surface (SERS) peuvent détecter des événements électrochimiques sur des nanoparticules individuelles tout en fournissant simultanément des informations sur les modes vibratoires des espèces de surface des électrodes. Dans cet article, un protocole pour suivre l’oxydoréduction électrochimique du bleu du Nil (NB) sur des nanoparticules Ag simples à l’aide de la microscopie et de la spectroscopie SERS est démontré. Tout d’abord, un protocole détaillé pour la fabrication de nanoparticules d’Ag sur un film d’Ag lisse et semi-transparent est décrit. Un mode plasmon dipolaire aligné le long de l’axe optique est formé entre une seule nanoparticule Ag et un film Ag. L’émission SERS de NB fixée entre la nanoparticule et le film est couplée en mode plasmon, et l’émission à angle élevé est recueillie par un objectif au microscope pour former un motif d’émission en forme de beignet. Ces modèles d’émission SERS en forme de beignet permettent l’identification sans ambiguïté de nanoparticules uniques sur le substrat, à partir desquelles les spectres SERS peuvent être collectés. Dans ce travail, une méthode d’utilisation du substrat SERS comme électrode de travail dans une cellule électrochimique compatible avec un microscope optique inversé est fournie. Enfin, le suivi de l’oxydoréduction électrochimique des molécules NB sur une nanoparticule Ag individuelle est montré. La configuration et le protocole décrits ici peuvent être modifiés pour étudier diverses réactions électrochimiques sur des nanoparticules individuelles.
L’électrochimie est une science de mesure importante pour étudier le transfert de charge, le stockage de charge, le transport de masse, etc., avec des applications dans diverses disciplines, y compris la biologie, la chimie, la physique et l’ingénierie 1,2,3,4,5,6,7 . Classiquement, l’électrochimie implique des mesures sur un ensemble – une grande collection d’entités uniques telles que des molécules, des domaines cristallins, des nanoparticules et des sites de surface. Cependant, comprendre comment ces entités uniques contribuent aux réponses moyennes d’ensemble est essentiel pour apporter de nouvelles compréhensions fondamentales et mécanistes en chimie et dans les domaines connexes en raison de l’hétérogénéité des surfaces d’électrodes dans des environnements électrochimiques complexes 8,9. Par exemple, la réduction d’ensemble a révélé des potentiels de réduction/oxydation spécifiques au site 10, la formation d’intermédiaires et de produits de catalyse mineurs 11, la cinétique de réaction spécifique au site 12,13 et la dynamique des porteurs de charge 14,15. La réduction de la moyenne d’ensemble est particulièrement importante pour améliorer notre compréhension au-delà des systèmes modèles vers les systèmes appliqués, tels que les cellules biologiques, l’électrocatalyse et les batteries, dans lesquels une grande hétérogénéité est souvent trouvée 16,17,18,19,20,21,22.
Au cours de la dernière décennie, il y a eu une émergence de techniques pour étudier l’électrochimieà entité unique 1,2,9,10,11,12. Ces mesures électrochimiques ont permis de mesurer de petits courants électriques et ioniques dans plusieurs systèmes et ont révélé de nouvelles caractéristiques chimiques et physiques fondamentales 23,24,25,26,27,28. Cependant, les mesures électrochimiques ne fournissent pas d’informations sur l’identité ou la structure des molécules ou des intermédiaires à la surface de l’électrode 29,30,31,32. L’information chimique à l’interface électrode-électrolyte est essentielle pour comprendre les réactions électrochimiques. La connaissance chimique interfaciale est généralement obtenue en couplant l’électrochimie avec la spectroscopie31,32. La spectroscopie vibrationnelle, telle que la diffusion Raman, est bien adaptée pour fournir des informations chimiques complémentaires sur le transfert de charge et les événements connexes dans les systèmes électrochimiques qui utilisent principalement, mais ne sont pas limités à, des solvants aqueux30. Couplée à la microscopie, la spectroscopie de diffusion Raman fournit une résolution spatiale jusqu’à la limite de diffraction de la lumière33,34. La diffraction présente cependant une limitation, car les nanoparticules et les sites de surface actifs sont plus petits que les limites de diffraction optique, ce qui empêche donc l’étude d’entités individuelles35.
La diffusion Raman améliorée en surface (SERS) s’est avérée être un outil puissant dans l’étude de la chimie interfaciale dans les réactions électrochimiques 20,30,36,37,38. En plus de fournir les modes vibratoires des molécules réactives, des molécules de solvant, des additifs et les chimies de surface des électrodes, le SERS fournit un signal localisé à la surface des matériaux qui supportent les oscillations électroniques de surface collectives, connues sous le nom de résonances plasmoniques de surface localisées. L’excitation des résonances plasmoniques conduit à la concentration du rayonnement électromagnétique à la surface du métal, augmentant ainsi à la fois le flux de lumière vers et la diffusion Raman des adsorbats de surface. Les métaux nobles nanostructurés tels que l’Ag et l’Au sont des matériaux plasmoniques couramment utilisés car ils supportent les résonances plasmoniques de lumière visible, qui sont souhaitables pour détecter les émissions avec des dispositifs à couplage de charge très sensibles et efficaces. Bien que les améliorations les plus importantes du SERS proviennent d’agrégats de nanoparticules39,40, un nouveau substrat SERS a été développé qui permet des mesures SERS à partir de nanoparticules individuelles : substrat SERS en mode gap (Figure 1)41,42. Dans les substrats SERS en mode gap, un miroir métallique est fabriqué et recouvert d’un analyte. Ensuite, les nanoparticules sont dispersées sur le substrat. Lorsqu’elle est irradiée avec une lumière laser polarisée circulairement, une résonance plasmonique dipolaire formée par le couplage de la nanoparticule et du substrat est excitée, ce qui permet des mesures SERS sur des nanoparticules uniques. L’émission SERS est couplée à la résonance plasmonique dipolaire43,44,45, qui est orientée le long de l’axe optique. Avec l’alignement parallèle du dipôle électrique rayonnant et de l’optique de collecte, seule l’émission à angle élevé est collectée, formant ainsi des modèles d’émission distincts en forme de beignet46,47,48,49 et permettant l’identification de nanoparticules uniques. Les agrégats de nanoparticules sur le substrat contiennent des dipôles rayonnants qui ne sont pas parallèles à l’axe optique50. Dans ce dernier cas, les émissions à angle bas et à angle élevé sont collectées et forment des modèles d’émission solides46.
Ici, nous décrivons un protocole pour la fabrication de substrats SERS en mode gap et une procédure pour les utiliser comme électrodes de travail pour surveiller les événements redox électrochimiques sur des nanoparticules Ag simples à l’aide de SERS. Il est important de noter que le protocole utilisant des substrats SERS en mode gap permet l’identification sans ambiguïté de nanoparticules uniques par imagerie SERS, ce qui constitue un défi majeur pour les méthodologies actuelles en électrochimie des nanoparticules uniques. En tant que système modèle, nous démontrons l’utilisation du SERS pour fournir une lecture de la réduction électrochimique et de l’oxydation du bleu du Nil A (NB) sur une seule nanoparticule Ag entraînée par un potentiel de balayage ou d’échelonnement (c.-à-d. voltampérométrie cyclique, chronoampérométrie). NB subit une réaction de réduction/oxydation multi-protons et multi-électrons dans laquelle sa structure électronique est modulée hors / en résonance avec la source d’excitation, ce qui fournit un contraste dans les spectres SERS correspondants 10,51,52. Le protocole décrit ici est également applicable aux molécules rédox non résonantes et aux techniques électrochimiques, qui peuvent être pertinentes pour des applications telles que l’électrocatalyse.
Le dépôt de minces films métalliques Cu et Ag sur des lamelles de recouvrement propres est essentiel pour s’assurer que le film final a une rugosité ne dépassant pas deux à quatre couches atomiques (ou une rugosité carrée moyenne de racine inférieure ou égale à environ 0,7 nm). La poussière, les rayures et les débris présents sur la lamelle de couverture avant le dépôt de métal sont des problèmes courants qui empêchent la fabrication du film lisse nécessaire pour produire des motifs d’émission en…
The authors have nothing to disclose.
Ce travail a été soutenu par des fonds de démarrage de l’Université de Louisville et un financement de Oak Ridge Associated Universities par le biais d’un prix Ralph E. Powe Junior Faculty Enhancement Award. Les auteurs remercient le Dr Ki-Hyun Cho d’avoir créé l’image de la figure 1. Le dépôt de métal et le MEB ont été effectués au Micro/Nano Technology Center de l’Université de Louisville.
Acetone, microelectronic grade | J. T. Baker | 9005-05 | |
Adjustable pipette, Eppendorf Reference 2 5000 mL | Eppendorf | 4924000100 | |
Analytical Balance, AB54-S/FACT | Metter Toledo | N.A. | |
Atomic Force Microscope, Easy scan 2 | Nanosurf | N.A. | |
AXXIS Electron Beam Thin Film Deposition System | Kurt J. Lesker | N.A. | |
Cary 60 UV-Vis Spectrophotometer | Agilent | N.A. | |
Conductive epoxy, two part | Electron Microscopy Sciences | 12642-14 | |
Copper pellets, 99.99% pure | Kurt J. Lesker | EVMCU40EXE | |
Copper wire, bare, 18 AWG | VWR | 66248-040 | |
Crucible, Graphite E-Beam | Kurt J. Lesker | EVCEB-23 | |
Diamond Scriber | Ted Pella | 54484 | |
EMCCD Camera, ProEM HS: 1024BX3 | Teledyne Princeton Instruments | N.A. | |
Epoxy, Clear | Gorilla Glue | N.A. | |
Glass Tube Cutter | Wheeler-Rex | 69012 | |
Glass Tube, Borossilicate (OD 0.75", ID 0.62", L 12") | McMaster-Carr | 8729K45 | |
Immersion oil, Type-F | Olympus | IMMOIL-F30CC | |
Inverted Microscope, IX73 | Olympus | N.A. | |
Laser, Excelsior One 642 nm Free space | Spectra-Physics | N.A. | |
LightField | Teledyne Princeton Instruments | N.A. | |
MATLAB 2022b | MathWorks | N.A. | |
Micro cover glass (coverslips), 24×60 mm No. 1 | VWR | 48404-455 | |
Microscope Smartphone Camera Adapter | qhma | QHMC017A-S01 | |
Nile Blue A, pure | Acros Organics | 415690100 | |
Nitrogen, Ultra Pure, Compressed | Specialty Gases | N.A. | |
Objective, UPLanXApo 100× Oil Immersion | Olympus | 14-910 | |
Polyimide Film, Kapton | 3M | 16089-4 | |
Potassium Phosphate Monobasic | VWR | P285 | |
Potentiostat, 660E | CH Instruments | N.A. | |
Pt wire | Alfa Aesar | 10956-BS | |
Scanning Electron Microscope, Apreo C SEM | Thermo Fischer Scientific | N.A. | |
Si wafer | Ted Pella | 16006 | |
Silver nanoparticles (nanospheres), NanoXact 0.02 mg/mL in 2 mM citrate | nanoComposix | AGCN60 | |
Silver pellets, 99.99% pure | Kurt J. Lesker | EVMAG40EXE-A | |
Slide Rack, Wash-N-Dry | Diversified Biotech | WSDR-2000 | |
Smartphone, iPhone 13 mini | Apple | N.A. | |
Sodium Phosphate Dibasic Heptahydrate | VWR | 0348 | |
Spectrometer, IsoPlane SCT320 | Teledyne Princeton Instruments | N.A. | |
Tissue Wipers, Light-duty | VWR | 82003-820 | |
Tweezers, KS-04 | Kaisi Hardware | N.A. | |
Utrasonic Generator, sweepSONIK | Blackstone-NEY Ultrasonics | 809379 | |
Water Ultrapurifier, Sartorius Arium mini | Sartorius | N.A. |