Das Protokoll beschreibt die Methodik der extrazellulären Aufzeichnung im motorischen Kortex (MC), um extrazelluläre elektrophysiologische Eigenschaften in frei beweglichen bewussten Mäusen aufzudecken, sowie die Datenanalyse von lokalen Feldpotentialen (LFPs) und Spikes, die für die Bewertung der neuronalen Netzwerkaktivität nützlich ist, die dem interessierenden Verhalten zugrunde liegt.
Das Protokoll zielt darauf ab, die Eigenschaften des neuronalen Feuerns und der lokalen Feldpotentiale (LFPs) in sich verhaltenden Mäusen aufzudecken, die bestimmte Aufgaben ausführen, indem die elektrophysiologischen Signale mit spontanem und/oder spezifischem Verhalten korreliert werden. Diese Technik stellt ein wertvolles Werkzeug dar, um die neuronale Netzwerkaktivität zu untersuchen, die diesen Verhaltensweisen zugrunde liegt. Der Artikel bietet ein detailliertes und vollständiges Verfahren für die Elektrodenimplantation und die daraus resultierende extrazelluläre Aufzeichnung in frei beweglichen bewussten Mäusen. Die Studie umfasst eine detaillierte Methode zur Implantation der Mikroelektrodenarrays, die Erfassung der LFP- und neuronalen Spiking-Signale im motorischen Kortex (MC) mit einem Mehrkanalsystem und die anschließende Offline-Datenanalyse. Der Vorteil der Mehrkanalaufzeichnung bei bewussten Tieren besteht darin, dass eine größere Anzahl von Spiking-Neuronen und neuronalen Subtypen erhalten und verglichen werden kann, was die Bewertung des Zusammenhangs zwischen einem bestimmten Verhalten und den damit verbundenen elektrophysiologischen Signalen ermöglicht. Insbesondere die in der vorliegenden Studie beschriebene Mehrkanal-extrazelluläre Aufzeichnungstechnik und das Datenanalyseverfahren können bei der Durchführung von Experimenten an sich verhaltenden Mäusen auch auf andere Hirnareale angewendet werden.
Das lokale Feldpotential (LFP), ein wichtiger Bestandteil extrazellulärer Signale, spiegelt die synaptische Aktivität großer Populationen von Neuronen wider, die den neuronalen Code für mehrere Verhaltensweisen bilden1. Spikes, die durch neuronale Aktivität erzeugt werden, tragen zum LFP bei und sind wichtig für die neuronale Kodierung2. Es wurde nachgewiesen, dass Veränderungen in Spikes und LFPs verschiedene Gehirnerkrankungen wie Alzheimer sowie Emotionen wie Angst usw. vermitteln.3,4. Es ist erwähnenswert, dass viele Studien gezeigt haben, dass sich die Spike-Aktivität bei Tieren signifikant zwischen wachem und anästhesiertem Zustand unterscheidet5. Obwohl Aufzeichnungen in anästhesierten Tieren die Möglichkeit bieten, LFPs mit minimalen Artefakten in hochdefinierten kortikalen Synchronisationszuständen zu beurteilen, unterscheiden sich die Ergebnisse bis zu einem gewissen Grad von dem, was bei wachen Probanden zu finden ist 6,7,8. Daher ist es sinnvoller, neuronale Aktivität über lange Zeitskalen und große räumliche Skalen bei verschiedenen Erkrankungen im Wachzustand des Gehirns mit Hilfe von Elektroden zu erfassen, die in das Gehirn implantiert werden. Dieses Manuskript enthält Informationen für Anfänger, wie man das Mikroantriebssystem herstellt und die Parameter mit gängiger Software einstellt, um die Spike- und LFP-Signale schnell und unkompliziert zu berechnen, um mit der Aufzeichnung und Analyse zu beginnen.
Obwohl die nicht-invasive Aufzeichnung von Gehirnfunktionen, wie z. B. durch die Verwendung von Elektroenzephalogrammen (EEGs) und ereigniskorrelierten Potentialen (ERPs), die von der Kopfhaut aufgezeichnet werden, in großem Umfang in Studien an Menschen und Nagetieren eingesetzt wurde, haben EEG- und ERP-Daten geringe räumliche und zeitliche Eigenschaften und können daher nicht die präzisen Signale erfassen, die durch die nahe gelegene dendritische synaptische Aktivität in einem bestimmten Hirnareal erzeugtwerden 1. Derzeit kann durch die Nutzung der Mehrkanalaufzeichnung bei bewussten Tieren die neuronale Aktivität in den tieferen Schichten des Gehirns chronisch und progressiv aufgezeichnet werden, indem ein Mikroantriebssystem während mehrerer Verhaltenstests in das Gehirn von Primaten oder Nagetieren implantiert wird 1,2,3,4,5,6,7,8,9 . Kurz gesagt, Forscher können ein Mikroantriebssystem konstruieren, das für die unabhängige Positionierung der Elektroden oder Tetroden verwendet werden kann, um verschiedene Teile des Gehirns anzusprechen10,11. Zum Beispiel beschrieben Chang et al. Techniken zur Aufzeichnung von Spikes und LFPs bei Mäusen durch Zusammenbau eines leichten und kompakten Mikroantriebs12. Darüber hinaus sind mikrobearbeitete Siliziumsonden mit kundenspezifischen Zubehörkomponenten für die Aufzeichnung mehrerer einzelner Neuronen und LFPs in Nagetieren während Verhaltensaufgaben13 kommerziell erhältlich. Obwohl verschiedene Konstruktionen für die Montage von Mikroantriebssystemen verwendet wurden, haben diese in Bezug auf die Komplexität und das Gewicht des gesamten Mikroantriebssystems immer noch begrenzten Erfolg. Zum Beispiel zeigten Lansink et al. ein mehrkanaliges Mikroantriebssystem mit einer komplexen Struktur für die Aufzeichnung aus einer einzelnen Gehirnregion14. Sato et al. berichteten über ein Mehrkanal-Mikroantriebssystem, das eine automatische hydraulische Positionierungsfunktion15 aufweist. Die Hauptnachteile dieser Mikroantriebssysteme sind, dass sie für Mäuse zu schwer sind, um sich frei zu bewegen, und für Anfänger schwer zu montieren sind. Obwohl sich die mehrkanalige extrazelluläre Aufzeichnung als geeignete und effiziente Technologie zur Messung der neuronalen Aktivität bei Verhaltenstests erwiesen hat, ist es für Anfänger nicht einfach, die von dem komplexen Mikroantriebssystem erfassten Signale aufzuzeichnen und zu analysieren. Angesichts der Tatsache, dass es schwierig ist, den gesamten Betriebsprozess der mehrkanaligen extrazellulären Aufzeichnung und Datenanalyse in frei beweglichen Mäusen in Gang zu bringen16,17, stellt dieser vorliegende Artikel vereinfachte Richtlinien vor, um den detaillierten Prozess der Herstellung des Mikroantriebssystems unter Verwendung allgemein verfügbarer Komponenten und Einstellungen vorzustellen; Die Parameter in der gängigen Software zur schnellen und unkomplizierten Berechnung der Spike- und LFP-Signale werden ebenfalls bereitgestellt. Darüber hinaus kann sich die Maus in diesem Protokoll durch die Verwendung eines Heliumballons frei bewegen, was dazu beiträgt, das Gewicht der Kopfbühne und des Mikroantriebssystems auszugleichen. Im Allgemeinen beschreiben wir in der vorliegenden Studie, wie man auf einfache Weise ein Mikroantriebssystem aufbauen und die Prozesse der Aufzeichnung und Datenanalyse optimieren kann.
Die Mehrkanalaufzeichnung in frei beweglichen Mäusen wurde in neurowissenschaftlichen Studien als nützliche Technologie angesehen, aber für Anfänger ist es immer noch eine ziemliche Herausforderung, die Signale aufzuzeichnen und zu analysieren. In der vorliegenden Studie stellen wir vereinfachte Richtlinien für die Herstellung von Mikroantriebssystemen und die Durchführung von Elektrodenimplantationen sowie vereinfachte Verfahren zur Erfassung und Analyse der elektrischen Signale mittels Spike-Sortiersoftw…
The authors have nothing to disclose.
Diese Arbeit wurde durch Zuschüsse der National Natural Science Foundation of China (31871170, 32170950 und 31970915), der Natural Science Foundation of Guangdong Province (2021A1515010804 und 2023A1515010899), der Guangdong Natural Science Foundation for Major Cultivation Project (2018B030336001) und des Guangdong Grant: Key Technologies for Treatment of Brain Disorders (2018B030332001) unterstützt.
2.54 mm pin header | YOUXIN Electronic Co., Ltd. | 1 x 5 | Applying for the movable micro-drive which can slide on its stulls. |
Adobe Illustrator CC 2017 | Adobe | N/A | To optimize images from GraphPad. |
BlackRock Microsystems | Blackrock Neurotech | Cerebus | This systems includes headsatge, DA convert, amplifier and computer. |
Brass nut | Dongguan Gaosi Technology Co., Ltd. | M0.8 brass nut | The nut fixes the position of screw. |
Brass screw | Dongguan Gaosi Technology Co., Ltd. | M0.8 x 11 mm brass screw | A screw that hold the movable micro-drive. |
C57BL/6J | Guangdong Zhiyuan Biomedical Technology Co., LTD. | N/A | 12 weeks of age. |
Centrifuge tube | Biosharp | 15 mL; BS-150-M | To store mice brain with sucrose sulutions. |
Conducting paint | Structure Probe, Inc. | 7440-22-4 | To improve the lead-connecting quality between connector pins and Ni-wires. |
Conductive copper foil tape | 3M | 1181 | To reduce interferenc. |
Connector | YOUXIN Electronic Co., Ltd. | 2 x 10P | To connect the headtage to micro-drive system. |
DC Power supply | Maisheng | MS-305D | A power device for electrolytic lesion. |
Dental cement | Shanghai New Century Dental Materials Co., Ltd. | N/A | To fix the electrode arrays on mouse's skull after finishing the implantation. |
Digital analog converter | Blackrock | 128-Channel | A device that converts digital data into analog signals. |
Epoxy resin | Alteco | N/A | To cover pins. |
Excel | Microsoft | N/A | To summarize data after analysis. |
Eye scissors | JiangXi YuYuan Medical Equipment Co.,Ltd. | N/A | For surgery or cutting the Ni-chrome wire. |
Fine forceps | JiangXi YuYuan Medical Equipment Co.,Ltd. | N/A | For surgery. |
Forceps | JiangXi YuYuan Medical Equipment Co.,Ltd. | N/A | For surgery or assembling the mirco-drive system. |
Freezing microtome | Leica | CM3050 S | Cut the mouse’s brain into slices |
Fused silica capillary tubing | Zhengzhou INNOSEP Scientific Co., Ltd. | TSP050125 | To serve as the guide tubes for Ni-chrome wires. |
Glass microelectrode | Sutter Instrument Company | BF100-50-10 | To mark the desired locations for implantation using the filled ink. |
GraphPad Prism 7 | GraphPad Software | N/A | To analyze and visualize the results. |
Guide-tube | Polymicro technologies | 1068150020 | To load Ni-chrome wires. |
Headstage | Blackrock | N/A | A tool of transmitting signals. |
Helium balloon | Yili Festive products Co., Ltd. | 24 inch | To offset the weight of headstage and micro-drive system. |
Ink | Sailor Pen Co.,LTD. | 13-2001 | To mark the desired locations for implantation. |
Iodine tincture | Guangdong Hengjian Pharmaceutical Co., Ltd. | N/A | To disinfect mouse's scalp. |
Lincomycin in Hydrochloride and Lidocaine hydrochloride gel | Hubei kangzheng pharmaceutical co., ltd. | 10g | A drug used to reduce inflammation. |
Meloxicam | Vicki Biotechnology Co., Ltd. | 71125-38-7 | To reduce postoperative pain in mice. |
Micromanipulators | Scientifica | Scientifica IVM Triple | For electrode arrays implantation. |
Microscope | Nikon | ECLIPSE Ni-E | Capture the images of brain sections |
nanoZ impedance tester | Plexon | nanoZ | To measure impedance or performing electrode impedance spectroscopy (EIS) for multichannel microelectrode arrays. |
NeuroExplorer | Plexon | NeuroExplorer | A tool for analyzing the electrophysiological data. |
NeuroExplorer | Plexon, USA | N/A | A software. |
Ni-chrome wire | California Fine Wire Co. | M472490 | 35 μm Ni-chrome wire. |
Offline Sorter | Plexon | Offline Sorter | A tool for sorting the recorded multi-units. |
PCB board | Hangzhou Jiepei Information Technology Co., Ltd. | N/A | Computer designed board. |
Pentobarbital | Sigma | P3761 | To anesthetize mice. |
Pentobarbital sodium | Sigma | 57-33-0 | To anesthetize the mouse. |
Peristaltic pump | Longer | BT100-1F | A device used for perfusion |
Polyformaldehyde | Sangon Biotech | A500684-0500 | The main component of fixative solution for fixation of mouse brains |
PtCl4 | Tianjin Jinbolan Fine Chemical Co., Ltd. | 13454-96-1 | Preparation for gold plating liquid. |
Saline | Guangdong Hengjian Pharmaceutical Co., Ltd. | N/A | To clean the mouse's skull. |
Silver wire | Suzhou Xinye Electronics Co., Ltd. | 2 mm diameter | Applying for ground and reference electrodes. |
Skull drill | RWD Life Science | 78001 | To drill carefully two small holes on mouse's skull. |
Stainless steel screws | YOUXIN Electronic Co., Ltd. | M0.8 x 2 | To protect the micro-drive system and link the ground and reference electrodes. |
Stereotaxic apparatus | RWD Life Science | 68513 | To perform the stereotaxic coordinates of bilateral motor cortex. |
Sucrose | Damao | 57-50-1 | To dehydrate the mouse brains after perfusion. |
Super glue | Henkel AG & Co. | PSK5C | To fix the guide tube and Ni-chrome wire. |
Temperature controller | Harvard Apparatus | TCAT-2 | To maintain mouse's rectal temperature at 37°C |
Tetracycline eye ointment | Guangdong Hengjian Pharmaceutical Co., Ltd. | N/A | To protect the mouse's eyes during surgery. |
Thread | Rapala | N/A | To link ballon and headstage. |
Vaseline | Unilever plc | N/A | To cover the gap between electrode arrays and mouse's skull. |