Kükenembryonen werden zur Untersuchung von humanen Glioblastom-Hirntumoren (GBM) in ovo – und in ex vivo-Hirnschnitt-Kokulturen verwendet. Das Verhalten von GBM-Zellen kann durch Zeitraffermikroskopie in ex vivo Kokulturen aufgezeichnet werden, und beide Präparate können am experimentellen Endpunkt durch detaillierte konfokale 3D-Analyse analysiert werden.
Der Kükenembryo ist ein ideales Modellsystem für die Untersuchung der Entwicklung von Wirbeltieren, insbesondere für experimentelle Manipulationen. Die Verwendung des Kükenembryos wurde erweitert, um die Bildung von humanen Glioblastom-Hirntumoren (GBM) in vivo und die Invasivität von Tumorzellen in das umliegende Hirngewebe zu untersuchen. GBM-Tumoren können durch Injektion einer Suspension fluoreszenzmarkierter Zellen in den E5-Mittelhirnventrikel (optisches Tectum) in der Ovozelle gebildet werden.
Abhängig von den GBM-Zellen bilden sich nach dem Zufallsprinzip kompakte Tumore in der Herzkammer und innerhalb der Hirnwand, und Gruppen von Zellen dringen in das Hirnwandgewebe ein. Dicke Gewebeschnitte (350 μm) von fixierten E15-Tecta mit Tumoren können immungefärbt werden, um zu zeigen, dass eindringende Zellen häufig entlang von Blutgefäßen wandern, wenn sie durch 3D-Rekonstruktion von konfokalen z-Stapelbildern analysiert werden. Lebende E15-Mittelhirn- und Vorderhirnschnitte (250-350 μm) können auf Membraneinsätzen kultiviert werden, wo fluoreszenzmarkierte GBM-Zellen an nicht-zufälligen Stellen eingeführt werden können, um Ex-vivo-Kokulturen zur Analyse der Zellinvasion, die auch entlang von Blutgefäßen auftreten kann, über einen Zeitraum von etwa 1 Woche bereitzustellen. Diese ex vivo Co-Kulturen können mittels Weitfeld- oder konfokaler Fluoreszenz-Zeitraffermikroskopie überwacht werden, um das Verhalten lebender Zellen zu beobachten.
Kokultivierte Scheiben können dann fixiert, immungefärbt und durch konfokale Mikroskopie analysiert werden, um festzustellen, ob die Invasion entlang von Blutgefäßen oder Axonen erfolgte oder nicht. Darüber hinaus kann das Co-Kultursystem zur Untersuchung potenzieller Zell-Zell-Interaktionen verwendet werden, indem Aggregate verschiedener Zelltypen und -farben an verschiedenen präzisen Orten platziert und Zellbewegungen beobachtet werden. Medikamentöse Behandlungen können an Ex-vivo-Kulturen durchgeführt werden, wobei diese Behandlungen nicht mit dem In-ovo-System kompatibel sind. Diese beiden komplementären Ansätze ermöglichen detaillierte und präzise Analysen des Verhaltens menschlicher GBM-Zellen und der Tumorbildung in einer hochgradig manipulierbaren Gehirnumgebung von Wirbeltieren.
In-vitro-Studien des Verhaltens von Krebszellen werden häufig verwendet, um potenzielle Mechanismen zu analysieren, die während des komplexeren Verhaltens wirken, das während der Tumorbildung und Zellinvasion in In-vivo-Xenotransplantatmodellen beobachtet wird. Zum Beispiel haben In-vitro-Studien beim Glioblastom (GBM) Mechanismen aufgedeckt, wie L1CAM möglicherweise während der Tumorbildung und der Gehirninvasion in einem neuartigen Kükenembryo-Xenotransplantat-Hirntumormodellwirkt 1,2,3,4,5. Obwohl sich In-vitro– und In-vivo-Experimente auf nützliche Weise ergänzen, hinterlassen sie eine erhebliche Lücke in der Korrelation der Ergebnisse. Zum Beispiel sind mechanistische Analysen der GBM-Zellmotilität auf einer Schale eine hochgradig künstliche Situation, und In-vivo-Xenograft-Modelle können nur statische Zeitpunkt– oder Endpunktanalysen der Tumorbildung und des Zellverhaltens aufdecken. In-vivo-Studien mit Nagetieren oder Kükenembryonen eignen sich nicht ohne weiteres zur Überwachung des Zellverhaltens, während die Zellen in diesen Xenotransplantatmodellen in Hirngewebe eindringen. Nichtsdestotrotz hat das Xenotransplantatmodell des Kükenembryos gezeigt, dass das Adhäsionsprotein L1CAM eine stimulierende Rolle bei der Invasionsfähigkeit menschlicher T98G-GBM-Zellen spielt 2,5.
Eine geeignete Lösung für dieses Problem kann durch die Überbrückung sowohl von In-vivo- als auch von In-vitro-Methoden unter Verwendung eines organotypischen Hirnschnittkulturmodells, einem sogenannten Ex-vivo-Modell, erreicht werden. In diesem Ex-vivo-Modell kann lebendes Hirngewebe bis zu einigen Wochen in einer Dicke von mehreren hundert Mikrometern gehalten werden, was es ermöglicht, Krebszellen zu implantieren, ihr Verhalten im tatsächlichen Gewebe im Laufe der Zeit zu beobachten und dann am Endpunkt des Experiments eine detailliertere Markeranalyse durchzuführen.
Eine beliebte organotypische Schnittkulturmethode besteht darin, eine mehrere hundert Mikrometer dicke Hirnscheibe auf einer durchscheinenden oder transparenten porösen Membran zu kultivieren, wobei das Gewebe der Luft ausgesetzt bleibt und dennoch Nährmedien das Gewebe von unterhalb der Membran erhalten können (siehe Stoppini et al.6). Verschiedene Variationen dieser Methode wurden für verschiedene Studien verwendet, einschließlich der Verwendung unterschiedlicher Medien oder unterschiedlicher Membraneinsätze. Zu den verschiedenen Membraneinsätzen gehören ein poröser (0,4 μm) Membraneinsatz mit 30 mm Durchmesser in einer 35-mm-Kulturschale6 und Zellkultureinsätze (0,4 μm) für 6-Well-Platten7. Zu den verschiedenen Medien gehören 50 % MEM/HEPES + 25 % hitzeinaktiviertes Pferdeserum + 25 % Hanks Balanced Salt Solution (HBSS)8, 50 % reduzierte Serummedien + 25 % Pferdeserum + 25 % HBSS9 sowie andere. Wenn eine transluzente oder transparente Membran zusammen mit fluoreszenzmarkierten GBM-Zellen verwendet wird, können solche Kulturen von unten mit einem inversen Weitfeld- oder konfokalen Fluoreszenzmikroskop abgebildet werden 10,11,12,13,14,15.
Während viele in vivo orthotope Hirntumor-Xenotransplantate und ex vivo organotypische Hirnschnittkulturmodelle mit Nagetieren etabliert wurden, wurde der Kükenembryo (Gallus gallus) für diese Zwecke nicht ausreichend genutzt. Es wurde jedoch gezeigt, dass der Kükenembryo als orthotopes Xenotransplantatmodell in vivo für die Untersuchung der Invasion von Gliomen beim Menschen und bei Ratten verwendet werden kann 1,2,5. Xenotransplantierte Zellen in das Gehirn von Kükenembryonen zeigten ähnliche Invasionsmuster wie in Nagetiermodellen, was die Verwendung von Kükenembryonen als In-vivo-Modell für die Analyse von GBM-Tumorzellen weiter unterstützt. Kükenembryonen sind auch kostengünstig, können leichter gepflegt werden als Nagetiere (d. h. in ihren Eierschalen in einem Laborinkubator) und sind viel einfacher zu verarbeiten, was sie zu einer attraktiven Option für kurzfristige In-vivo-GBM-Studien macht. In einem kürzlich erschienenen Artikel wurde die Verwendung von Gehirnschnittkulturen aus Kükenembryonen für die Bildung und das Wachstum von Axonen während der normalen Gehirnentwicklung beschrieben, bei denen die Schnitte mindestens 7 Tage lang lebensfähig waren16. Die Verwendung solcher Kükenembryonen-Hirnschnittkulturen für die ex vivo Analyse des Verhaltens von GBM-Zellen in einer Gewebeumgebung fehlt jedoch. In diesem Artikel wird sowohl die Transplantation von humanen GBM-Zellen und GBM-Stammzellen (GSCs) in das Gehirn des frühen Kükenembryos in vivo beschrieben, als auch die Einführung von GBM-Zellen in lebende Kükenembryonen-Hirnschnittkulturen ex vivo. Einige repräsentative Beispiele für die resultierenden Tumore und Zellinvasionsmuster, die aus diesen Präparaten gewonnen werden, werden ebenfalls bereitgestellt.
Zu den kritischen Schritten des Protokolls für die Injektion von Zellen in den Ventrikel des Mittelhirns (optisches Tectum) gehört, dass die Blutgefäße in der Chorioallantoikummembran in der Eizelle oder in der Umgebung des Embryos vor und während der Injektion nicht beschädigt werden, obwohl die Amnionmembran, die den Embryo unmittelbar umgibt, sanft gezogen und gehalten werden kann, um den Kopf zu positionieren, wenn die Zellen in das Mittelhirn injiziert werden. Das Amnion ist relativ zäh und kann mit einer feinen Pinzette gezogen werden, um den Kopf zu positionieren und mit einer Hand ruhig zu halten, um mit der anderen Hand Zellen in das optische Tectum zu injizieren, das ist die große, runde Struktur in der Mitte des Gehirns. Im Allgemeinen liegt die Lebensfähigkeit von injizierten Embryonen zwischen 25% und 75%, abhängig von unbekannten Faktoren, und praktisch jeder Embryo, der überlebt, enthält mindestens einen kleinen Tumor im optischen Tectum. Zu den entscheidenden Schritten bei der Erzeugung lebensfähiger Hirnschnitte gehört das Abtupfen des Gewebes von überschüssiger Flüssigkeit, damit die Agarose während des Schneidens am Gehirn haftet, und um Gewebe und Schnitte kalt zu halten, bis sie auf den Membraneinsatz gelegt werden. Da verschiedene Zelltypen unterschiedlich viele Sphäroide bilden (in Geschwindigkeit und Größe), sollten die plattierte Zelldichte auf Poly-HEMA-Platten und die Zeitspanne bis zur Ernte von Sphäroide für jeden Zelltyp optimiert werden.
Die Arbeit hier wurde keiner formalen Längsschnittstudie zur Lebensfähigkeit von Hirnschnitten unterzogen. Yang et al. verwendeten Kükenembryonen-Hirnschnittkulturen, die den hier verwendeten ähnlich waren, und zeigten eine gute Lebensfähigkeit der Schnitte für mindestens 7 Tage16. Frühere Arbeiten zeigten, dass, wenn OT-Gewebe in suboptimalen Medien gehalten wurde, viele pyknotische Kerne im Gewebe auftraten, die in den Schnitten in der vorliegenden Arbeit nicht auftraten. Wenn Schnitte unter suboptimalen Bedingungen degenerieren, fragmentieren sich die Blutgefäße und erscheinen als Reihen von Laminin-positiven Kugeln (nicht gezeigt). Obwohl die Viabilität hier nicht durch Methoden wie Elektrophysiologie oder aktive Caspase-3-Expression überprüft wurde, trat hier keiner der Indikatoren für Zelltod auf, die unter suboptimalen Kulturbedingungen beobachtet wurden.
Der OT wurde für In-vivo-Hirntumorexperimente in Betracht gezogen, da er die am leichtesten injizierbare Region mit dem größten Ventrikel ist. Bei E5, dem spätesten Tag, an dem der Embryo klein genug ist, um auf dem Eigelb zugänglich zu bleiben, müssen Injektionen in einen Ventrikel vorgenommen werden, da alle Gehirnregionen nichts anderes als eine dünne ventrikuläre Zone sind. Nichtsdestotrotz führen diese Injektionen erfolgreich zu eingebetteten Tumoren mit Zellen, die in das Hirnparenchym eindringen. Manchmal finden sich daraus resultierende Tumore im Vorderhirn oder Kleinhirn, was jedoch nicht häufig vorkommt. Ex vivo Scheiben des E15 opticutischen Tectums wurden hier primär für Experimente verwendet, so dass die ex vivo Co-Kulturergebnisse mit den in vivo Injektionsexperimenten korreliert werden können. Es sind jedoch auch Vorderhirnschnitte geeignet, die im Vergleich zum optischen Tectum eine größere Oberfläche und einen sehr dünnen Ventrikel aufweisen, wodurch das Vorderhirn möglicherweise besser für ex vivo Co-Kulturen geeignet ist, die nicht mit In-vivo-Injektionen korreliert werden.
Hier konnte gezeigt werden, dass In-vivo-Injektionen , gefolgt von Gewebefixierung, vibrierendem Gewebeschnitt und Immunfärbung für Laminin und andere Marker, zu hochauflösenden Bildern von GBM-Zellen und GSCs in Hirngewebe in unmittelbarer Nähe von Blutgefäßen führten. Die Möglichkeit, die Beziehungen zwischen Tumorzellen und Blutgefäßen zu bestimmen, wurde durch die Erstellung von 3D-Volumen-Renderings aus Z-Stapeln konfokaler optischer Schnitte unter Verwendung der konfokalen Software und der Anweisungen des Herstellers erheblich erleichtert. Zeitrafferaufnahmen mittels Weitfeld-Fluoreszenzmikroskopie von GFP-, mCherry- und DiD-markierten Zellen waren möglich; Wandernde Zellen, die sich in unmittelbarer Nähe der stark fluoreszierenden Sphäroide befanden, wurden jedoch manchmal durch das “Leuchten” des Sphäroids verdeckt. Dieser unerwünschte Effekt kann durch eine sorgfältige Anpassung der Belichtungszeiten für die Aufnahme von Weitfeldbildern etwas minimiert werden. Zeitrafferaufnahmen mit konfokalen Z-Stapeln über die Zeit (4D) eliminierten das unscharfe Leuchten der Sphäroide und führten zu scharf definierten wandernden Zellen mit dunklem Hintergrund. Dies wurde im Protokoll nicht beschrieben, sondern ähnlich wie bei der Weitfeld-Zeitrafferaufnahme durchgeführt, die durchgeführt wurde, während sich Gehirnschnitte auf den transparenten Membraneinsätzen in einer 6-Well-Kunststoffplatte befanden. Obwohl die konfokale Zeitrafferaufnahme zu deutlich klareren Bildern einzelner Zellen und ihres Verhaltens führt, ist ein Mehrpunkt-Zeitrafferexperiment, bei dem Z-Stapel von 10 Z-Ebenen/Punkt in 10-Minuten-Intervallen über einen Zeitraum von 20 Stunden gesammelt werden, eine umfangreiche Verwendung der Scankopf-Galvanometer. Da dies die Lebensdauer der Galvanometer erheblich verkürzen könnte, wird diese Methode mit Bedacht eingesetzt.
Obwohl das Kükenembryosystem sowohl für In-vivo-Injektions- als auch für Ex-vivo-Co-Kulturexperimente, die das Verhalten von GBM-Zellen untersuchen, sehr gut geeignet ist, gibt es einige Einschränkungen für dieses Modellsystem. Wie bei jedem Xenotransplantat-System ist die Umgebung, in der menschliche Zellen implantiert werden, nicht das menschliche Gehirn, aber das Verhalten der GBM-Zellen scheint das in Nagetiermodellen und bei menschlichen Patienten nachzuahmen. Nach Durchführung von In-vivo-Injektionsexperimenten an E5 werden Tumore normalerweise 10 Tage lang bis E15 gebildet. Dies ist eindeutig nicht genug Zeit, um alle Aspekte der Tumorentstehung und Zellinvasion zu untersuchen. Hier konnte jedoch gezeigt werden, dass sich im Hirnparenchym solide Tumore bilden, Zellen interagieren und sich innerhalb des Tumors neu anordnen und innerhalb dieses relativ kurzen Zeitraums eine signifikante Hirninvasion sowohl entlang der Blutgefäße als auch diffus auftritt. Eine weitere Einschränkung des In-vivo-Kükenembryosystems besteht darin, dass es aufgrund des großen Dotters und des extraembryonalen Kreislaufsystems, das während der Entwicklung des Kükenembryos arbeitet, nicht für Medikamente oder andere Behandlungen geeignet ist. Topische flüssige medikamentöse Behandlungen würden zu einer sehr variablen und unbekannten Konzentration im Gehirn führen, die auf die Diffusion vom Embryo weg in die viel größere Dottermasse zurückzuführen ist. In ähnlicher Weise würde die intravenöse Injektion von Medikamenten in das sehr empfindliche extraembryonale Kreislaufsystem aus den Blutgefäßen austreten oder diffundieren und ebenfalls zu unbekannten Konzentrationen im Gehirn führen. Dies ist einer der Hauptgründe für die Einführung der Ex-vivo-Schnittkulturmethode , damit nicht nur das Zellverhalten beobachtet und mittels Zeitraffermikroskopie verfolgt werden konnte, sondern auch, damit Behandlungen, die das Verhalten von GBM-Zellen in einer Schale erfolgreich verändert haben4 , in einer relevanteren Hirngewebeumgebung getestet werden konnten.
Die Entwicklung des orthotopen Hirntumormodellsystems für Kükenembryonen wird als eine bedeutende Ergänzung zu den Systemen und Werkzeugen angesehen, die für die Untersuchung der GBM-Tumorbildung und des invasiven Zellverhaltens zur Verfügung stehen. Befruchtete Hühnereier sind wahrscheinlich in den meisten Gebieten leicht verfügbar, sie sind im Vergleich zu Nagetieren kostengünstig, es fallen keine Kosten für die Tierpflege an, die Embryonen sind sehr widerstandsfähig und resistent gegen Infektionen (d. h. die meiste Arbeit wird auf einer Arbeitsplatte durchgeführt), die Embryonen sind hochgradig manipulierbar und können in schalenloser Kultur gezüchtet werden19, und Kükenembryonen gelten nicht als Wirbeltiere und benötigen daher keine IACUC-Zulassung nach NIH-Richtlinien (institutionelle Anforderungen kann variieren). Diese vielfältigen Vorteile machen das Kükenembryosystem sehr attraktiv, wenn man seine Fragen und Experimente auf diejenigen beschränkt, die in seine Grenzen fallen. Mehrere GBM-Zellstudien wurden von anderen mit dem Kükenembryo durchgeführt, aber diese haben fast ausschließlich die Chorioallantoismembran (CAM) des Embryos 20,21,22,23,24,25,26,27,28,29 und die Gliedmaßenknospe 30 verwendet, und nicht das Gehirn. Es wurde auch berichtet, dass auf E231 ein Medulloblastom in das Kükenhirn implantiert wurde. Zweifelsohne sollte die hier beschriebene Verwendung des Kükenembryos als orthotopes Xenotransplantat-Modellsystem zu Ergebnissen führen, die für die Biologie des humanen GBM-Tumors viel aussagekräftiger sind als Studien mit dem CAM.
Obwohl diese Studien gerade erst begonnen haben, das Gehirntumor-Modellsystem für Kükenembryonen für Studien des Verhaltens menschlicher GBM-Zellen und des GSC vollständig zu nutzen, besteht die Hoffnung, dass andere die Anwendungen erweitern und weitere potenzielle Anwendungen finden werden. Man könnte sich vorstellen, dass dieses System nicht nur Mechanismen aufdeckt, die die GBM-Tumorbildung und das Zellverhalten regulieren, sondern auch die präklinische Erprobung bestimmter Medikamente und Substanzen an bestimmten Patientenzellen ermöglicht. Wenn beispielsweise im Voraus Hirnschnittkulturen angelegt würden, könnten Tumorzellen, Stücke aus chirurgischen Tumorresektionen oder von Patienten stammende GBM-Organoide32 direkt in eine Ex-vivo-Kokultur eingebracht werden, und verschiedene Behandlungen könnten innerhalb weniger Tage bewertet werden. In ähnlicher Weise könnten dissoziierte Patientenzellen direkt in das E5-Mittelhirn in ovo injiziert werden, um ihre Fähigkeit zu beurteilen, Tumore zu bilden und in das Hirnparenchym einzudringen. Es ist daher zu hoffen, dass die Beschreibungen der Methoden und die repräsentativen Ergebnisse hier den verstärkten Einsatz dieses stark untergenutzten Systems für die Hirntumorforschung erleichtern und fördern.
The authors have nothing to disclose.
Diese Arbeit wurde zum Teil durch ein Stipendium des National Cancer Institute an D.S.G. (R03CA227312) und durch ein großzügiges Stipendium der Lisa Dean Moseley Foundation finanziert. Lebende GBM-Proben wurden mit Zustimmung des Patienten über das Tissue Procurement Center des Helen F. Graham Cancer Center and Research Institute gewonnen. Die Finanzierung von A.R. erfolgte durch das National Center for Research Resources und das National Center for Advancing Translational Sciences, National Institutes of Health (UL1TR003107). Sommer-Forschungsstipendien für Studenten an N.P., A.L., Z.W. und K.S. wurden vom Undergraduate Research Program der University of Delaware vergeben.
1 cm x 1 cm square hole paper punch | Birabira | N/A | |
1 mm biopsy punch pen | Robbins Instruments | 20335 | |
6 well insert plate (Corning Transwell) | Millipore Sigma | CLS3450 | |
9" Disposable Pasteur Pipets | Fisher Scientific | 13-678-20C | |
15 mL centrifuge tubes | Fisher Scientific | 05-539-12 | |
24 well plate | Corning Costar | 3526 | |
50 mL centrifuge tubes | Fisher Scientific | 05-539-9 | |
Agar | Fisher BioReagents | BP1423-500 | for embedding fixed brains |
Alexafluor 488-conjugated GAM IgG | Jackson Immunoresearch | 115-605-146 | |
Alexafluor 647-conjugated GAM IgG | Jackson Immunoresearch | 115-545-146 | |
Aluminum foil | ReynoldsWrap | N/A | |
Ampicillin | Sigma Aldrich | A-9518 | |
anti-integrin alpha-6 monoclonal antibody GOH3 | Santa Cruz Biotechnology | sc-19622 | |
anti-L1CAM monoclonal antibody UJ127 | Santa Cruz Biotechnology | sc-53386 | |
anti-laminin monoclonal antibody | Developmental Studies Hybridoma Bank | 3H11 | |
anti-nestin monoclonal antibody 10c2 | Santa Cruz Biotechnology | sc-23927 | |
anti-Sox2 monoclonal antibody E-4 | Santa Cruz Biotechnology | sc-365823 | |
B27 supplement without vitamin A | GIBCO | 17504-044 | |
bisbenzimide (Hoechst 33258) | Sigma-Aldrich | B2883 | nuclear stain |
Cell culture incubator | Forma | standard humidified CO2 incubator | |
Centrifuge | Beckman Coulter | ||
Confocal microscope | Nikon Instruments | C2si+ | With custom-made cell incubator chamber |
Confocal microscope objective lenses | Nikon Instruments | Plan Apo lenses, except S Plan Fluor ELWD 20x 0.45 NA objective lens for confocal time-lapse imaging | |
Confocal microscope software | Nikon Instruments | NIS Elements | Version 5.2 |
Curved foreceps | World Precision Intruments | 504478 | |
Curved scissors | Fine Science Tools | ||
Curved spatula | Fisher Scientific | 14-375-20 | |
Cyanoacrylate glue | Krazy Glue | KG-585 12R | |
D-Glucose | Millipore Sigma | G8270 | |
DiD far red fluorescent dye | Invitrogen | V22887 | Vybrant DiD |
DMEM | Sigma Aldrich | D5671 | |
DMEM/F12 | Sigma Aldrich | D8437 | |
DMSO | Sigma Aldrich | D4540 | |
Dulbecco's Phosphate buffered saline (PBS) | Sigma Aldrich | P5493-1L | |
egg incubator | Humidaire | ||
electrical tape (10 mil thick/254 µm) | Scotch | N/A | |
Ethanol 200 proof | Decon Laboratories | 2701 | |
Fast green FCF dye | Avocado Research Chemicals | 16520 | |
FBS | Gemini Bio-products | 900-108 | |
filter paper | Fisher Scientific | ||
Gauze | Dynarex | 3353 | |
Glass Capillaries for microinjection | World Precision Instruments | TW100-4 | |
Glycerol | Fisher BioReagents | BP228-1 | for mounting media |
GSCs (human glioblastoma stem cells) | Not applicable | Isolated from patient GBM specimens in Galileo laboratory in GSC media and then transduced with a GFP encoding lentiviral vector. Cells used were between passage 10 and 30. | |
Hanks Balanced Salt Solution (HBSS) | Corning | 21-020-CV | |
Hemacytometer | Hausser scientific | ||
Heparin | Fisher Scientific | BP2524-100 | |
HEPES buffer | Sigma Aldrich | H0887 | |
Horse Serum (HI) | Gibco | 26050-088 | |
Human FGF-2 | BioVision | 4037-1000 | |
Human TGF-α | BioVision | 4339-1000 | |
Inverted phase contrast microscope | Nikon Instruments | TMS | for routine viewing of cultured cells |
KCl | Fisher Scientific | BP366 | |
KH2PO4 | Fisher Scientific | P284 | |
Laboratory film | Parafilm | ||
Labquake Shaker | LabIndustries | T400-110 | |
L-Glut:Pen:Strep | Gemini Bio-products | 400-110 | |
Low-melt agarose | Fisher Scientific | BP1360 | for embedding live brains |
Matrix | Corning Matrigel | 354234 | |
Medium 199 | GIBCO | 11150-059 | |
MEM | Corning | 10-010-CV | |
Metal vibratome block | |||
Micropipette tips (20, 200, 1,000 µL) | Fisherbrand | ||
Micropipettors (20, 200, 1,000 µL) | Gilson | ||
Microscope Coverglass (no. 1.5 thickness) | Fisherbrand | 12544A | |
NaCl | Fisher Scientific | S271 | |
NaH2PO4 + H2O | Fisher Scientific | S369 | |
NaHCO3 | Fisher Scientific | BP328 | |
Normal goat serum | Millipore Sigma | 526-M | |
N-propyl gallate | Sigma Aldrich | P3130 | for mounting media |
Parafilm | Parafilm | ||
Paraformaldehyde | Electron Microscopy Sciences | 15710 | |
PBS | Sigma Aldrich | P5493-1L | |
Pencil | |||
Plain Microscope slides | Fisherbrand | 12-550-A3 | |
Plastic 35 mm Petri dish | Becton Dickinson | 351008 | |
pneumatic picopump | World Precision Intruments | PV830 | |
Poly(2-hydroxyethyl methacrylate) (poly-HEMA) | Sigma Aldrich | P-3932 | |
razor blade- double edge | PACE | for cutting fixed brain slices | |
sapphire knife | Delaware Diamond Knives | for cutting live brain slices | |
Scalpel | TruMed | 1001 | |
Sodium cacodylate buffer 0.2 M pH 7.4 | Electron Microscopy Sciences | 11652 | |
Specimen chamber for vibratome | custom-made | ||
Stereo Dissecting Microscope | Nikon Instruments | SMZ1500 | Equipped with epifluorescence |
straight foreceps | World Precision Intruments | 500233 | |
straight scissors | Fine Science Tools | ||
Sucrose | Mallinckrodt | 7723 | |
Time-lapse fluorescence microscope (widefield fluorescence) | Nikon Instruments | TE2000-E | With custom-made cell incubator chamber (see Fotos et al., 2006) |
Tissue culture dish polystyrene 100 mm | Thermo Fisher Scientific | 130182 | for cell culturing |
Tissue culture dish polystyrene 60 mm | Becton Dickinson | 353004 | for cell culturing |
Transfer pipette | American Central Scientific Co. | FFP011 | |
Transparent tape | Scotch | ||
Triton X-100 | Sigma Aldrich | T-8787 | |
Trypsin (0.25%) + 2.21 mM EDTA | Corning | 25-053-CI | |
U-118 MG human GBM cell line | ATCC | HTB-15 | Cells were transduced with a lentiviral vector encoding the entire ectodomain sequence of the L1CAM adhesion protein and then with lentiviral vector pUltra-hot encoding mCherry. Passage numbers are unknown. |
Vacuum pump | Cole-Parmer | EW-07532-40 | "Air Cadet" |
Vibrating tissue slicer | Vibratome | 3000 | for cutting live and fixed brain slices |