Summary

基于溶剂蒸发的孔隙率控制技术提高软电容式压力传感器的灵敏度

Published: March 24, 2023
doi:

Summary

提出了一种基于溶剂蒸发技术的简单且具有成本效益的制造方法,以优化软电容式压力传感器的性能,该方法通过使用不同质量比的模塑PDMS/甲苯溶液在介电层中的孔隙率控制来实现。

Abstract

软压力传感器在软机器人和触觉界面中发展“人机”触觉方面发挥着重要作用。具体而言,具有微结构聚合物基质的电容式传感器因其高灵敏度、宽线性范围和快速响应时间而进行了相当大的努力探索。然而,传感性能的提高通常依赖于介电层的结构设计,这需要复杂的微细加工设施。本文介绍了一种简单且低成本的方法来制造多孔电容式压力传感器,该方法使用基于溶剂蒸发的方法调节孔隙率,从而提高了灵敏度。该传感器由多孔聚二甲基硅氧烷 (PDMS) 介电层组成,该介电层与由弹性导电聚合物复合材料 (ECPC) 制成的顶部和底部电极粘合。通过将碳纳米管(CNTs)掺杂的PDMS导电浆料刮涂成模具图案的PDMS薄膜来制备电极。为了优化介电层的孔隙率以增强传感性能,PDMS溶液用不同质量分数的甲苯稀释,而不是过滤或研磨成不同尺寸的糖孔形成剂(PFA)。甲苯溶剂的蒸发允许快速制造具有可控孔隙率的多孔介电层。结果表明,当甲苯与PDMS的比例从1:8提高到1:1时,灵敏度可以提高两倍。这项工作中提出的研究提供了一种低成本的方法来制造具有可调传感器参数的软感觉机械感受器的完全集成的仿生软机器人抓手。

Introduction

近年来,柔性压力传感器因其在软机器人123,“人机”触觉界面45健康监测678中不可或缺的应用而受到关注。通常,压力传感的机制包括压阻式 147、压电式 2,6、电容 239、1011、1213 和摩擦电8传感器。其中,电容式压力传感器因其高灵敏度、低检测限(LOD)等特点,成为触觉传感中最有前途的方法之一。

为了获得更好的传感性能,柔性电容式压力传感器引入了微金字塔2,9,14,微柱15和微孔910,1112,131617等各种微结构并优化了制造方法以进一步提高传感水平这种结构的性能。然而,这些结构中的大多数都需要复杂的微细加工设施,这大大增加了制造成本和操作难度。例如,微金字塔作为软压力传感器中最常用的微观结构,依靠光刻定义和湿蚀硅片作为成型模板,这需要精密设备和严格的洁净室环境914。因此,可以通过简单的制造工艺和低成本原材料制造,同时保持高传感性能的微孔结构(多孔结构)最近引起了越来越多的关注9,10,11,1213,1617.这将讨论,以及改变PFA及其量的缺点,作为使用我们的分数控制方法的动机。

本文提出了一种基于溶剂蒸发技术的简单、低成本的方法来制备孔隙率可控的多孔柔性电容式压力传感器。完整的制造过程包括多孔PDMS介电层的制造,电极的刮擦涂层以及三个功能层的粘合。具体而言,本工作创新性地利用一定质量比的PDMS/甲苯混合溶液,基于糖/赤藓糖醇混合物模板制备了多孔PDMS介电层。同时,均匀的PFA粒径确保了均匀的孔形貌和分布;因此,可以通过改变PDMS/甲苯质量比来控制孔隙率。实验结果表明,通过将PDMS/甲苯质量比从1:8提高到1:1,可以将所提出的压力传感器的灵敏度提高两倍以上。光学显微镜图像也证实了由于不同的PDMS/甲苯质量比而导致的微孔壁厚的变化。优化后的软电容式压力传感器具有较高的传感性能,灵敏度和响应时间分别为3.47% kPa−1 和0.2 s。该方法实现了快速、低成本且易于操作的多孔介电层的制造,具有可控的孔隙率。

Protocol

1. 多孔PDMS介电层软电容式压力传感器的制备 多孔PDMS介电层的制造按照以下步骤准备糖/赤藓糖醇多孔模板。用孔径为270μm和500μm的样品筛过滤糖。选择粒径在270-500μm范围内的糖。注意:只要均匀性在公差范围内,更大或更小的糖粒径也是可以接受的。糖颗粒的直径将影响后续步骤中制造的多孔PDMS层的孔径,但不会完全确定孔径。 将赤藓糖醇(见 <stron…

Representative Results

集总糖/赤藓糖醇多孔模板的照片如图3A所示。 图3B显示了具有刮擦涂层ECPC图案的柔性电极层。图3C显示了用所提出的方法制造的带有多孔介电层的软电容式压力传感器。基于PDMS/甲苯溶液制备了4个多孔PDMS介电层,质量比分别为1:1、3:1、5:1和8:1。显示不同结构的孔形貌的光学显微镜图像如图3D</stro…

Discussion

本工作提出了一种基于溶剂蒸发的简单方法控制孔隙率,一系列实验结果证明了其可行性。虽然多孔结构已广泛应用于柔性电容式压力传感器,但孔隙率控制仍需进一步优化。与改变PFA 11,1213,18,19的粒径和聚合物底物与PFA 1720的比例的现有方法不同</sup…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了中国国家自然科学基金资助62273304。

Materials

3D printer Zhejiang Qidi Technology Co., Ltd X-MAX
3D printing metarials Zhejiang Qidi Technology Co., Ltd 3D Printing Filament PLA 1.75 mm
Carbon nanotubes (CNTs) XFNANO XFM13
Data acquisition (DAQ) National Instruments USB6002
Double side tape Minnesota Mining and Manufacturing (3M) 3M VHB 4910 1 mm thick
Electrode metal mold Guangdong Shunde Molarobot Co., Ltd This metal mold is a round metal plate with a flat bottom round groove and an embossed electrode pattern of 0.2 mm thick in the middle of the groove.
Erythritol Shandong Sanyuan Biotechnology Co.,Ltd.
Isopropyl Alcohol (IPA) Sinopharm chemical reagent Co., Ltd 80109218
LabVIEW National Instruments LabVIEW 2019
LCR meter Keysight EA4980AL
Metal wire Hangzhou Hongtong WIRE&CABLE Co., Ltd. 2UEW/155
Microscope Aosvi T2-3M180
Numerical modeling software COMSOL COMSOL Multiphysics 5.6
Polydimethylsiloxane (PDMS) Dow Chemical Company SYLGAR 184 Silicone Elastomer Kit Two parts (base and curing agent)
Sealing film Corning PM-996 parafilm
Si wafer Suzhou Crystal Silicon Electronic & Technology Co.,Ltd ZK20220416-03 Diameter (mm): 50.8 +/- 0.3
Type/Orientation: P/100
Thickness (µm): 525 +/- 25
Silver conductive paint Electron Microscopy Sciences 12686-15
Stepping motor BEIJING HAI JIE JIA CHUANG Technology Co., Ltd 57H B56L4-30DB
Sugar/erythritol template metal mold Guangdong Shunde Molarobot Co., Ltd This metal mold is a 5 mm thick square metal plate with a flat bottom square groove of 2.5 mm deep.
Toluene Sinopharm chemical reagent Co., Ltd 10022819

References

  1. Ozioko, O., et al. SensAct: The soft and squishy tactile Sensor with integrated flexible actuator. Advanced Intelligent Systems. 3 (3), 1900145 (2021).
  2. Qiu, Y., et al. A biomimetic drosera capensis with adaptive decision-predation behavior based on multifunctional sensing and fast actuating capability. Advanced Functional Materials. 32 (13), 2110296 (2021).
  3. Ntagios, M., Nassar, H., Pullanchiyodan, A., Navaraj, W. T., Dahiya, R. Robotic hands with intrinsic tactile sensing via 3D printed soft pressure sensors. Advanced Intelligent Systems. 2 (6), 1900080 (2019).
  4. Tang, Z., Jia, S., Zhou, C., Li, B. 3D Printing of highly sensitive and large-measurement-range flexible pressure sensors with a positive piezoresistive effect. ACS Applied Materials & Interfaces. 12 (25), 28669-28680 (2020).
  5. Dai, Y., Chen, J., Tian, W., Xu, L., Gao, S. A PVDF/Au/PEN multifunctional flexible human-machine interface for multidimensional sensing and energy harvesting for the internet of things. IEEE Sensors Journal. 20 (14), 7556-7568 (2020).
  6. Yang, Y., et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sensors and Actuators A: Physical. 301, 111789 (2020).
  7. Gao, Y. J., et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Advanced Materials. 29 (39), 1701985 (2017).
  8. Meng, K., et al. Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure. Advanced Functional Materials. 29 (5), 180688 (2019).
  9. Yang, J. C., et al. Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS Applied Materials & Interfaces. 11 (21), 19472-19480 (2019).
  10. Chen, S., Zhuo, B., Guo, X. Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity and durable sensing over wide pressure range. ACS Applied Materials & Interfaces. 8 (31), 20364-20370 (2016).
  11. Ding, H., et al. Influence of the pore size on the sensitivity of flexible and wearable pressure sensors based on porous Ecoflex dielectric layers. Materials Research Express. 6 (6), 066304 (2019).
  12. Yoon, J. I., Choi, K. S., Chang, S. P. A novel means of fabricating microporous structures for the dielectric layers of capacitive pressure sensor. Microelectronic Engineering. 179, 60-66 (2017).
  13. Wang, J., Li, L., Zhang, L., Zhang, P., Pu, X. Flexible capacitive pressure sensors with micro-patterned porous dielectric layer for wearable electronics. Journal of Micromechanics and Microengineering. 32 (3), 034003 (2022).
  14. Mannsfeld, S. C. B., et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Materials. 9 (10), 859-864 (2010).
  15. Wan, Y., et al. A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures. Advanced Electronic Materials. 4 (4), 1700586 (2018).
  16. Kwon, D., et al. Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer. ACS Applied Materials & Interfaces. 8 (26), 16922-16931 (2016).
  17. Li, W., et al. A porous and air gap elastomeric dielectric layer for wearable capacitive pressure sensor with high sensitivity and a wide detection range. Journal of Materials Chemistry C. 8 (33), 11468-11476 (2020).
  18. Kim, J. O., et al. Highly ordered 3D microstructure-based electronic skin capable of differentiating pressure, temperature, and proximity. ACS Applied Materials & Interfaces. 11 (1), 1503-1511 (2019).
  19. Lo, L. W., et al. A soft sponge sensor for multimodal sensing and distinguishing of pressure, strain, and temperature. ACS Applied Materials & Interfaces. 14 (7), 9570-9578 (2022).
  20. Hwang, J., Kim, Y., Yang, H., Oh, J. H. Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor. Composites Part B: Engineering. 211, 108607 (2021).
  21. Jung, Y., et al. Linearly sensitive pressure sensor based on a porous multistacked composite structure with controlled mechanical and electrical properties. ACS Applied Materials & Interfaces. 13 (24), 28975-28984 (2021).
  22. Choi, J., et al. Synergetic effect of porous elastomer and percolation of carbon nanotube filler toward high performance capacitive pressure sensors. ACS Applied Materials & Interfaces. 12 (1), 1698-1706 (2020).
  23. Choi, S. J., et al. A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Applied Materials & Interfaces. 3 (12), 4552-4556 (2011).
  24. Rinaldi, A., Tamburrano, A., Fortunato, M., Sarto, M. S. A flexible and highly sensitive pressure sensor based on a PDMS foam coated with graphene nanoplatelets. Sensors. 16 (12), 2148 (2016).

Play Video

Cite This Article
Zhu, Z., Cao, Y., Chi, H., Wang, X., Hou, D. Sensitivity Enhancement of Soft Capacitive Pressure Sensors Using a Solvent Evaporation-Based Porosity Control Technique. J. Vis. Exp. (193), e65143, doi:10.3791/65143 (2023).

View Video