Aqui, demonstramos um protocolo para a síntese em duas etapas de núcleos monocristalinos usando um par não-isoestrutural metal-orgânico (MOF), HKUST-1 e MOF-5, que possuem reticulados cristalinos bem combinados.
Devido à sua designabilidade e efeitos sinérgicos sem precedentes, as estruturas metal-orgânicas core-shell (MOFs) têm sido ativamente examinadas recentemente. No entanto, a síntese de MOFs de núcleo monocristalino é muito desafiadora e, portanto, um número limitado de exemplos tem sido relatado. Aqui, sugerimos um método de síntese de núcleos monocristalinos HKUST-1@MOF-5, que é HKUST-1 no centro do MOF-5. Através do algoritmo computacional, este par de MOFs foi previsto para ter os parâmetros de rede e pontos de conexão química correspondentes na interface. Para construir a estrutura núcleo-casca, preparamos os cristais HKUST-1 em forma octaédrica e cúbica como um MOF central, no qual as facetas (111) e (001) foram principalmente expostas, respectivamente. Através da reação sequencial, a casca do MOF-5 foi bem cultivada na superfície exposta, mostrando uma interface de conexão contínua, que resultou na síntese bem sucedida de HKUST-1@MOF-5 monocristalino. Sua formação de fase pura foi comprovada por imagens microscópicas ópticas e padrões de difração de raios X de pó (PXRD). Este método apresenta o potencial e os insights sobre a síntese núcleo-casca monocristalina com diferentes tipos de MOFs.
MOF-on-MOF é um tipo de material híbrido composto por duas ou mais estruturas metal-orgânicas (MOFs) diferentes1,2,3. Devido às várias combinações possíveis de constituintes e estruturas, os MOF-sobre-MOFs fornecem novos compósitos variados com propriedades notáveis, que não foram alcançadas em MOFs isolados, oferecendo grande potencial em muitas aplicações 4,5,6. Dentre os vários tipos de MOF-on-MOFs, uma estrutura core-shell em que um MOF envolve outro tem a vantagem de otimizar as características de ambos os MOFs ao projetar um sistema mais elaborado 5,6,7,8,9,10. Embora muitos exemplos de MOFs núcleo-casca tenham sido relatados, MOFs núcleo-casca monocristalinos são incomuns e têm sido sintetizados com sucesso principalmente a partir de pares isoestruturais11,12,13. Além disso, MOFs núcleo-casca cristalinos simples construídos usando pares MOF não isoestruturais têm sido raramente relatados, devido à dificuldade em selecionar um par que exiba uma rede cristalina bem compatível3. Para obter interfaces perfeitas dos MOFs de núcleo monocristalino, uma rede cristalina bem combinada e pontos de conexão química entre os dois MOFs são críticos. Aqui, o ponto de conexão química é definido como a localização espacial onde o nó ligante/metal de um MOF encontra o nó/ligante metálico do segundo MOF através de uma ligação de coordenação. Em nossos relatos anteriores14, o algoritmo computacional foi usado para selecionar alvos ótimos para síntese, e seis pares de MOF sugeridos foram sintetizados com sucesso.
Este artigo demonstra um protocolo para sintetizar um MOF núcleo-casca monocristalino de um par HKUST-1 e MOF-5, que são MOFs icônicos compostos de constituintes e topologias totalmente diferentes. O HKUST-1 foi escolhido como núcleo por ser mais estável que o MOF-5 em condições de reação solvotérmica15,16. Além disso, como os pontos de conexão química entre MOF-5 e HKUST-1 são bem combinados nos planos (001) e (111), cristais cúbicos e octaédricos de HKUST-1 nos quais cada plano é exposto foram usados como MOF central. Este protocolo sugere a possibilidade de sintetizar MOFs core-shell mais diversos com correspondência de treliça.
Nesse protocolo, cristais de HKUST-1 em forma cúbica e octaédrica foram sintetizados, referindo-se a um método previamenterelatado14. Para a síntese de HKUST-1, a solução de H 3 BTC foi adicionada enquanto aqueceva e agitava a solução de(NO 3)2·2.5H2O para evitar a precipitação de H3 BTC àmedida que a temperatura diminuía. Posteriormente, o ácido acético foi adicionado imediatamente para evitar a nucleação rápida e garantir o…
The authors have nothing to disclose.
Este trabalho foi apoiado pela National Research Foundation of Korea (NRF) Grant financiado pelo Ministério da Ciência e pelo ICP (No. NRF-2020R1A2C3008908 e 2016R1A5A1009405).
Acetic acid | DAEJUNG | 1002-4400 | Synthesis of HKUST-1 (protocol steps 1.4, and 2.4) |
Copper(II) nitrate hemipentahydrate | Sigma Aldrich | 223395-100G | Synthesis of HKUST-1 (protocol steps 1.1, and 2.1) |
D2 PHASER | Bruker AXS | DOC-B88-EXS017-V3 | Powder X-ray diffraction |
Digital stirring hot plate | Thermo Scientific | SP131320-33Q | Hotplate for heating and stirring (protocol steps 1.2, and 2.2) |
Direct-Q3UV water purification system | MILLIPORE | ZRQSVP030 | Deionized water (protocol steps 1.1, and 2.1) |
Ethyl alcohol anhydrous, 99.9% | DAEJUNG | 4023-4100 | Synthesis of HKUST-1 (protocol steps 1.2, and 2.2) |
Forced convection oven (OF-02P/PW) | JEIO TECH | EDA8136 | Oven for heating reaction (protocol steps 1.5, 2.5, and 3.4) |
N,N-diethylformamide | TCI | D0506 | Synthesis of HKUST-1@MOF-5 (protocol step 3.1) |
N,N'-Dimethylformamide | DAEJUNG | 6057-4400 | Synthesis of HKUST-1 (protocol steps 1.1, and 2.1) |
Stereo microscopes | Nikon | SMZ745T | Optical Microscope |
Terephthalic acid | Sigma Aldrich | 185361-500G | Synthesis of HKUST-1@MOF-5 (protocol step 3.1) |
Trimesic acid | Sigma Aldrich | 482749-100G | Synthesis of HKUST-1 (protocol steps 1.2, and 2.2) |
Ultrasonic cleaner | BRANSONIC | CPX-952-338R | Sonicator with bath for dissolving solution (protocol step 3.1) |
Zinc nitrate hexahydrate | Sigma Aldrich | 228737-100G | Synthesis of HKUST-1@MOF-5 (protocol step 3.1) |