Summary

Analisi di pesticidi organoclorurati in un campione di terreno mediante un approccio QuEChERS modificato utilizzando formiato di ammonio

Published: January 20, 2023
doi:

Summary

Il presente protocollo descrive l’utilizzo del formiato di ammonio per la partizionazione di fase in QuEChERS, insieme alla gascromatografia-spettrometria di massa, per determinare con successo i residui di pesticidi organoclorurati in un campione di terreno.

Abstract

Attualmente, il metodo QuEChERS rappresenta il protocollo di preparazione dei campioni più utilizzato in tutto il mondo per l’analisi dei residui di pesticidi in un’ampia varietà di matrici sia nei laboratori ufficiali che non ufficiali. Il metodo QuEChERS che utilizza il formiato di ammonio si è dimostrato in precedenza vantaggioso rispetto all’originale e alle due versioni ufficiali. Da un lato, la semplice aggiunta di 0,5 g di formiato di ammonio per grammo di campione è sufficiente per indurre la separazione di fase e ottenere buone prestazioni analitiche. D’altra parte, il formiato di ammonio riduce la necessità di manutenzione nelle analisi di routine. Qui, è stato applicato un metodo QuEChERS modificato utilizzando formiato di ammonio per l’analisi simultanea dei residui di pesticidi organoclorurati (OCP) nel suolo agricolo. Nello specifico, 10 g del campione sono stati idratati con 10 ml di acqua e quindi estratti con 10 ml di acetonitrile. Successivamente, la separazione di fase è stata effettuata utilizzando 5 g di formiato di ammonio. Dopo la centrifugazione, il surnatante è stato sottoposto a una fase di pulizia dell’estrazione in fase solida dispersiva con solfato di magnesio anidro, ammina primaria-secondaria e ottadecilsilano. La gascromatografia-spettrometria di massa è stata utilizzata come tecnica analitica. Il metodo QuEChERS che utilizza il formiato di ammonio si è dimostrato un’alternativa efficace per estrarre residui di OCP da un campione di terreno.

Introduction

La necessità di aumentare la produzione alimentare ha portato all’uso intensivo e diffuso di pesticidi in tutto il mondo negli ultimi decenni. I pesticidi vengono applicati alle colture per proteggerle dai parassiti e aumentare i raccolti, ma i loro residui di solito finiscono nell’ambiente del suolo, specialmente nelle aree agricole1. Inoltre, alcuni pesticidi, come i pesticidi organoclorurati (OCP), hanno una struttura molto stabile, quindi i loro residui non si decompongono facilmente e persistono nel terreno per lungo tempo2. Generalmente, il suolo ha un’elevata capacità di accumulare residui di pesticidi, soprattutto quando ha un alto contenuto di sostanza organica3. Di conseguenza, il suolo è uno dei compartimenti ambientali più contaminati dai residui di pesticidi. Ad esempio, uno degli studi completi finora condotti ha rilevato che l’83% dei 317 terreni agricoli provenienti da tutta l’Unione europea era contaminato da uno o più residui di pesticidi4.

L’inquinamento del suolo da residui di antiparassitari può influire sulle specie non bersaglio, sulla funzione del suolo e sulla salute dei consumatori lungo tutta la catena alimentare a causa dell’elevata tossicità dei residui 5,6. Di conseguenza, la valutazione dei residui di antiparassitari nel suolo è essenziale per valutare i loro potenziali effetti negativi sull’ambiente e sulla salute umana, in particolare nei paesi in via di sviluppo a causa della mancanza di norme rigorose sull’uso dei pesticidi7. Ciò rende l’analisi multiresiduo dei pesticidi sempre più importante. Tuttavia, l’analisi rapida e accurata dei residui di pesticidi nel suolo è una sfida difficile a causa del gran numero di sostanze interferenti, nonché del basso livello di concentrazione e delle diverse proprietà fisico-chimiche di questi analiti4.

Di tutti i metodi di analisi dei residui di pesticidi, il metodo QuEChERS è diventato l’opzione più rapida, più semplice, più economica, più efficace, più robusta e più sicura8. Il metodo QuEChERS prevede due passaggi. Nella prima fase, viene eseguita un’estrazione su microscala basata sulla suddivisione tramite salatura tra uno strato acquoso e uno acetonitrile. Nella seconda fase viene effettuato un processo di pulizia che utilizza un’estrazione dispersiva in fase solida (dSPE); questa tecnica utilizza piccole quantità di diverse combinazioni di assorbenti porosi per rimuovere i componenti che interferiscono con la matrice e supera gli svantaggi dellaSPE 9 convenzionale. Quindi, il QuEChERS è un approccio ecologico con pochi solventi / sostanze chimiche che vanno sprecati che fornisce risultati molto accurati e riduce al minimo le potenziali fonti di errori casuali e sistematici. Infatti, è stato applicato con successo per l’analisi di routine ad alta produttività di centinaia di pesticidi, con forte applicabilità in quasi tutti i tipi di campioni ambientali, agroalimentari e biologici 8,10. Questo lavoro mira ad applicare e convalidare una nuova modifica del metodo QuEChERS che è stato precedentemente sviluppato e accoppiato a GC-MS per analizzare gli OCP nel suolo agricolo.

Protocol

1. Preparazione delle soluzioni madre NOTA: Si consiglia di indossare guanti in nitrile, camice da laboratorio e occhiali di sicurezza durante l’intero protocollo. Preparare una soluzione madre in acetone a 400 mg/L da una miscela commerciale di OCP (vedere Tabella dei materiali) a 2.000 mg/L in esano:toluene (1:1) in un matraccio tarato da 25 ml. Nella tabella 1 sono riportati tutti gli OCP selezionati. Preparare le succes…

Representative Results

La validazione completa del metodo analitico è stata eseguita in termini di linearità, effetti matriciali, recupero e ripetibilità. Per la valutazione della linearità sono state utilizzate curve di calibrazione abbinate alla matrice con campioni bianchi a spillo a sei livelli di concentrazione (5 μg/kg, 10 μg/kg, 50 μg/kg, 100 μg/kg, 200 μg/kg e 400 μg/kg). I coefficienti di determinazione (R2) erano superiori o uguali a 0,99 per tutti gli OCP. Il livello minimo di taratur…

Discussion

La9 originale e le due versioni ufficiali13,14 del metodo QuEChERS utilizzano solfato di magnesio insieme a cloruro di sodio, acetato o sali di citrato per promuovere la separazione della miscela acetonitrile/acqua durante l’estrazione. Tuttavia, questi sali tendono ad essere depositati come solidi sulle superfici nella sorgente di spettrometria di massa (MS), il che causa la necessità di una maggiore manutenzione dei metodi basati sulla …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Vorrei ringraziare Javier Hernández-Borges e Cecilia Ortega-Zamora per il loro inestimabile sostegno. Voglio anche ringraziare l’Universidad EAN e l’Universidad de La Laguna.

Materials

15 mL disposable glass conical centrifuge tubes PYREX 99502-15
2 mL centrifuge tubes Eppendorf 30120094
50 mL centrifuge tubes with screw caps VWR 21008-169
5977B mass-selective detector Agilent Technologies 1617R019
7820A gas chromatography system Agilent Technologies 16162016
Acetone Supelco 1006582500
Acetonitrile VWR 83642320
Ammonium formate VWR 21254260
Automatic shaker KS 3000 i control IKA 3940000
Balance Sartorius Lab Instruments Gmbh & Co ENTRIS224I-1S
Bondesil-C18, 40 µm Agilent Technologies 12213012
Bondesil-PSA, 40 µm Agilent Technologies 12213024
Cyclohexane VWR 85385320
EPA TCL pesticides mix Sigma Aldrich 48913
Ethyl acetate Supelco 1036492500
G4567A automatic sampler Agilent Technologies 19490057
HP-5ms Ultra Inert (5%-phenyl)-methylpolysiloxane 30 m x 250 µm x 0.25 µm column Agilent Technologies 19091S-433UI
Magnesium sulfate monohydrate Sigma Aldrich 434183-1KG
Mega Star 3.R centrifuge VWR 521-1752
Milli-Q gradient A10 Millipore RR400Q101
p,p'-DDE-d8 Dr Ehrenstorfer DRE-XA12041100AC
Pipette tips 2 – 200 µL BRAND 732008
Pipette tips 5 mL BRAND 702595
Pipette tips 50 – 1000 uL BRAND 732012
Pippette Transferpette S variabel 10 – 100 µL BRAND 704774
Pippette Transferpette S variabel 100 – 1000 µL BRAND 704780
Pippette Transferpette S variabel 20 – 200 µL BRAND 704778
Pippette Transferpette S variabel 500 – 5000 µL BRAND 704782
Vials with fused-in insert Sigma Aldrich 29398-U
OCPs CAS registry number
α-BHC 319-84-6
β-BHC 319-85-7
Lindane 58-89-9
δ-BHC 319-86-8
Heptachlor 76-44-8
Aldrin 309-00-2
Heptachlor epoxide 1024-57-3
α-Endosulfan 959-98-8
4,4'-DDE-d8 (IS) 93952-19-3
4,4'-DDE 72-55-9
Dieldrin 60-57-1
Endrin 72-20-8
β-Endosulfan 33213-65-9
4,4'-DDD 72-54-8
Endosulfan sulfate 1031-07-8
4,4'-DDT 50-29-3
Endrin ketone 53494-70-5
Methoxychlor 72-43-5

References

  1. Sabzevari, S., Hofman, J. A worldwide review of currently used pesticides’ monitoring in agricultural soils. Science of The Total Environment. 812, 152344 (2022).
  2. Tzanetou, E. N., Karasali, H. A. Comprehensive review of organochlorine pesticide monitoring in agricultural soils: The silent threat of a conventional agricultural past. Agriculture. 12 (5), 728 (2022).
  3. Farenhorst, A. Importance of soil organic matter fractions in soil-landscape and regional assessments of pesticide sorption and leaching in soil. Soil Science Society of America Journal. 70 (3), 1005-1012 (2006).
  4. Silva, V., et al. Pesticide residues in European agricultural soils – A hidden reality unfolded. Science of The Total Environment. 653, 1532-1545 (2019).
  5. Vischetti, C., et al. Sub-lethal effects of pesticides on the DNA of soil organisms as early ecotoxicological biomarkers. Frontiers in Microbiology. 11, 1892 (2020).
  6. Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., Wang, M. -. Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics. 9 (3), 42 (2021).
  7. Zikankuba, V. L., Mwanyika, G., Ntwenya, J. E., James, A. Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food & Agriculture. 5 (1), 1601544 (2019).
  8. Varela-Martínez, D. A., González-Sálamo, J., González-Curbelo, M. &. #. 1. 9. 3. ;., Hernández-Borges, J. Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) extraction. Handbooks in Separation Science. , 399-437 (2020).
  9. Anastassiades, M., Lehotay, S. J., Štajnbaher, D., Schenck, F. J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. Journal of AOAC International. 86 (2), 412-431 (2003).
  10. González-Curbelo, M. &. #. 1. 9. 3. ;., et al. Evolution and applications of the QuEChERS method. Trends in Analytical Chemistry. 71, 169-185 (2015).
  11. European Union. European Regulation (EC) NO 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. Official Journal of the European Union. 70, 1-16 (2005).
  12. Kwon, H., Lehotay, S. J., Geis-Asteggiante, L. Variability of matrix effects in liquid and gas chromatography-mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops. Journal of Chromatography A. 1270, 235-245 (2012).
  13. Lehotay, S. J., et al. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study. Journal of AOAC International. 90 (2), 485-520 (2007).
  14. European Committee for Standardization (CEN). Standard Method EN 15662. Food of plant origin-Determination of pesticide residues using GC-MS and/or LC-MS/MS following acetonitrile extraction/partitioning and clean-up by dispersive SPE-QuEChERS method. European Committee for Standardization. , (2008).
  15. González-Curbelo, M. &. #. 1. 9. 3. ;., Lehotay, S. J., Hernández-Borges, J., Rodríguez-Delgado, M. &. #. 1. 9. 3. ;. Use of ammonium formate in QuEChERS for high-throughput analysis of pesticides in food by fast, low-pressure gas chromatography and liquid chromatography tandem mass spectrometry. Journal of Chromatography A. 1358, 75-84 (2014).
  16. Han, L., Sapozhnikova, Y., Lehotay, S. J. Method validation for 243 pesticides and environmental contaminants in meats and poultry by tandem mass spectrometry coupled to low-pressure gas chromatography and ultrahigh-performance liquid chromatography. Food Control. 66, 270-282 (2016).
  17. Lehotay, S. J., Han, L., Sapozhnikova, Y. Automated mini-column solid-phase extraction clean-up for high-throughput analysis of chemical contaminants in foods by low-pressure gas chromatography-tandem mass spectrometry. Chromatographia. 79 (17), 1113-1130 (2016).
  18. Lehotay, S. J. Possibilities and limitations of isocratic fast liquid chromatography-tandem mass spectrometry analysis of pesticide residues in fruits and vegetables. Chromatographia. 82 (1), 235-250 (2019).
  19. Han, L., Matarrita, J., Sapozhnikova, Y., Lehotay, S. J. Evaluation of a recent product to remove lipids and other matrix co-extractives in the analysis of pesticide residues and environmental contaminants in foods. Journal of Chromatography A. 1449, 17-29 (2016).
  20. Varela-Martínez, D. A., González-Curbelo, M. &. #. 1. 9. 3. ;., González-Sálamo, J., Hernández-Borges, J. Analysis of pesticides in cherimoya and gulupa minor tropical fruits using AOAC 2007.1 and ammonium formate QuEChERS versions: A comparative study. Microchemical Journal. 157, 104950 (2020).
  21. González-Curbelo, M. &. #. 1. 9. 3. ;., Varela-Martínez, D. A., Riaño-Herrera, D. A. Pesticide-residue analysis in soils by the QuEChERS method: A review. Molecules. 27 (13), 4323 (2022).
  22. Anastassiades, M., Maštovská, K., Lehotay, S. Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides. Journal of Chromatography A. 1015 (1-2), 163-184 (2003).
  23. Maštovská, K., Lehotay, S., Anastassiades, M. Combination of analyte protectants to overcome matrix effects in routine GC analysis of pesticide residues in food matrixes. Analytical Chemistry. 77 (24), 8129-8137 (2005).
  24. Rahman, M., Abd El-Aty, A., Shim, J. Matrix enhancement effect: A blessing or a curse for gas chromatography? – A review. Analytica Chimica Acta. 801, 14-21 (2013).
  25. Rouvire, F., Buleté, A., Cren-Olivé, C., Arnaudguilhem, C. Multiresidue analysis of aromatic organochlorines in soil by gas chromatography-mass spectrometry and QuEChERS extraction based on water/dichloromethane partitioning. Comparison with accelerated solvent extraction. Talanta. 93, 336-344 (2012).
  26. Lesueur, C., Gartner, M., Mentler, A., Fuerhacker, M. Comparison of four extraction methods for the analysis of 24 pesticides in soil samples with gas chromatography-mass spectrometry and liquid chromatography-ion trap-mass spectrometry. Talanta. 75 (1), 284-293 (2008).
  27. Ðurović-Pejčev, R. D., Bursić, V. P., Zeremski, T. M. Comparison of QuEChERS with traditional sample preparation methods in the determination of multiclass pesticides in soil. Journal of AOAC International. 102 (1), 46-51 (2019).
  28. European Commission. SANTE/11312/2021. Guidance document on analytical quality control and method validation procedures for pesticide residues analysis in food and feed. European Commission. , (2021).

Play Video

Cite This Article
González-Curbelo, M. Á. Analysis of Organochlorine Pesticides in a Soil Sample by a Modified QuEChERS Approach Using Ammonium Formate. J. Vis. Exp. (191), e64901, doi:10.3791/64901 (2023).

View Video