本プロトコルは、高解像度顕微鏡イメージングと同時圧力差測定を組み合わせることにより、 準2D多孔質媒体におけるバイオフィルムの発生を研究するためのマイクロ流体プラットフォームについて説明しています。このプラットフォームは、バイオ詰まりに対する多孔質媒体中の細孔径と流体流量の影響を定量化します。
細菌バイオフィルムは、土壌やろ過膜など、いくつかの環境および工業用多孔質媒体に含まれています。バイオフィルムは特定の流動条件下で成長し、細孔を詰まらせ、それによって局所的な流体の流れをリダイレクトする可能性があります。バイオフィルムが細孔を詰まらせる能力、いわゆるバイオクラックは、多孔質媒体の局所的な透過性に多大な影響を及ぼし、システム内に圧力が上昇し、システムを通る質量の流れに影響を与える可能性があります。本研究では、異なる物理的条件(例えば、異なる流速および細孔サイズ)におけるバイオフィルムの成長と流体の流れとの間の相互作用を理解するために、外部から課され制御された物理的条件下で顕微鏡を使用してバイオフィルムの発達を視覚化するためのマイクロ流体プラットフォームを開発する。多孔質媒体中のバイオフィルム誘発圧力上昇は、圧力センサーを使用して同時に測定することができ、後でバイオフィルムの表面被覆率と相関させる。提示されたプラットフォームは、フロー条件下で多孔質媒体中のバイオフィルムによって引き起こされるバイオロギングを調査するための体系的なアプローチのベースラインを提供し、環境分離株または複数種のバイオフィルムの研究に適応することができます。
バイオフィルム(高分子外物質(EPS)の自己分泌マトリックスに埋め込まれた細菌コロニー)は、土壌や帯水層1などの天然多孔質媒体や、バイオレメディエーション2、水ろ過3、医療機器4などの技術的および医学的用途に遍在しています。バイオフィルムマトリックスは、多糖類、タンパク質繊維、および細胞外DNA5,6で構成されており、微生物、栄養素の利用可能性、および環境条件に強く依存します7。それでも、行列の関数は普遍的です。バイオフィルム構造の足場を形成し、微生物群集を機械的および化学的ストレスから保護し、バイオフィルムのレオロジー特性に大きく関与しています5。
多孔質媒体では、バイオフィルムの成長が毛穴を詰まらせ、いわゆるバイオ目詰まりを引き起こす可能性があります。バイオフィルムの発達は、多孔質媒体8、9、10の2本の柱を隔てる距離として定義される流体の流れと細孔サイズによって制御されます。細孔サイズと流体の流れの両方が、栄養素の輸送と局所的なせん断力を制御します。次に、成長するバイオフィルムは細孔を詰まらせ、流体11、12、13の速度分布、物質輸送、および多孔質媒体14、15の透水伝導率に影響を与える。透水係数の変化は、閉じ込められたシステムの圧力の増加に反映されます16,17,18,19。バイオフィルムの発生とバイオクロッキングにおける現在のマイクロ流体研究は、均質な形状16,20(すなわち、単一の細孔サイズを有する)または不均一な多孔質媒体12,21,22における流速の影響の研究に焦点を当てている。しかし、バイオフィルムの発達に対する流量と細孔サイズの影響と、その結果生じるバイオ詰まった多孔質媒体の圧力変化を解きほぐすには、さまざまな多孔質媒体の形状と環境条件を並行して研究できる高度に制御可能で用途の広い実験プラットフォームが必要です。
本研究では、圧力測定と多孔質媒体内の進化するバイオフィルムの同時イメージングを組み合わせたマイクロ流体プラットフォームを紹介します。ポリジメチルシロキサン(PDMS)製のマイクロ流体デバイスは、ガス透過性、生体適合性、およびチャネル形状設計の柔軟性により、多孔質媒体でのバイオフィルム発生を研究するのに適したツールです。マイクロフルイディクスは、物理的および化学的条件(例えば、流体の流れおよび栄養素濃度)を高精度で制御して、微生物生息地の環境を模倣することを可能にする23。さらに、マイクロ流体デバイスは、光学顕微鏡を使用してマイクロメートル分解能で容易に画像化し、オンライン測定(例えば、局所圧力)と組み合わせることができる。
この研究では、実験は、制御された課された流動条件下での均質な多孔質媒体アナログにおける細孔サイズの影響の研究に焦点を当てています。シリンジポンプを使用して培地の流れを強制し、マイクロ流体チャネルを通る圧力差を圧力センサーと同時に測定します。バイオフィルムの開発は、枯 草菌 のプランクトン培養物をマイクロ流体チャネルに播種することによって開始されます。進化するバイオフィルムの定期的なイメージングと画像解析により、さまざまな実験条件下での表面被覆に関する細孔スケール分解情報を取得できます。圧力変化とバイオクロッキングの程度に関する相関情報は、バイオ詰まった多孔質媒体の透過性推定に重要なインプットを提供します。
圧力センサーと組み合わせたマイクロ流体多孔質媒体類似体は、多孔質媒体中のバイオフィルム発達を研究するための適切なツールを提供します。マイクロ流体多孔質媒体の設計における多様性、特に直径、不規則な形状、孔径などの柱の配置により、多くの形状の調査が可能になります。これらの形状は、単一の細孔から、異なる天然(例えば、土壌)および工業用(例えば、膜およびフィル?…
The authors have nothing to disclose.
著者らは、SNSF PRIMA助成金179834(E.S.へ)、ETHからの裁量的資金提供(R.S.へ)、ETHチューリッヒ研究助成金(R.S.およびJ.J.M.へ)、およびEawagからの裁量的資金提供(J.J.M.へ)を認めている。著者らは、 図1B の実験セットアップを説明してくれたRoberto Pioliと、シリコンウェーハの準備をしてくれたEla Burmeisterに感謝したいと思います。
Acrodisc 25 mm Syringe Filter, 1.2 µm Versapor Membrane | Pall Corporation | PN4190 | 1.2 µm filters |
BD 10 mL Syringe (Luer-Lock) | BD | 300912 | used to fill the channel with deionised water |
Box Incubator | Life Imaging Services | used to have a stable temperature during the biofilm growth experiment | |
Cell density meter CO8000 | WPA biowave | OD meter | |
Centrifuge vial | Eppendorf | 30120086 | 1.5 mL |
CETONI Base 120 | CETONI GmbH | syringe pump | |
CorelCAD | CorelDRAW | software used to design the microfluidic channel geometries | |
Culture tubes (14 mL, sterile) | greiner bio-one | Culture tubes | |
Drying oven, VENTI-Line | VWR | Oven to cure the PDMS | |
Handy | Migros | Detergent solution | |
Hot plate with temperature control | VRW | to cure the PDMS-glass bonding after plasma treatment | |
ImageJ | FIJI | Image analysis software | |
Innova 42 Inc Shaker (New Brunswick) | Eppendorf | Incubator | |
Isopropanol (> 99.8%) | Sigma Aldrich | 67-63-0 | |
Masterflex transfer tubing | Masterflex | HV-06419-05 | 0.020'' ID, 0.06'' OD |
Micro Slides, Plain, 75 x 60 mm | Corning | 2947-75X50 | Glass slides |
Microfluidic pressure sensor (1 bar) | Elveflow | Pressure sensors | |
Miltex Biopsy puncher, diameter 1.5 mm | Integra | Puncher to make the inlet and outlet holes of the microfluidic channel | |
mrDev600 developer | Microresist | ||
Nikon Eclipse Ti2 | Nikon Instruments | Microscope | |
Nutrient broth n°3 | Sigma Aldrich | ||
Omnifix Syringe with Luer-Lock | B.Braun | syringes of different volume | |
Plasma chamber Zepto | Diener Electronic | ZEPTO-1 | used to plasma bond the PDMS and the glass slide |
Precision wipes (Kimtech Science) | Kimberly Clark | KCP-7552 | to dry the glass slide |
Scale | VWR-CH | 611-2605 | used to weigh the elastomer to crosslinking agent ratio |
Silicon wafer (10 cm) | Silicon Materials Inc. | N//Phos <100> 1-10 Ω cm | |
Spincoater, Spin module SM150 | Sawatec | ||
SU8 3050 Photoresist | Kayakuam | ||
Süss MA6 Mask aligner | SUSS MicroTec Group | used to align the chrome-glass mask | |
Sylgard 184 | Dow Corning | silicone elastomer kit; curing agent | |
Techni Etch Cr01 | Technic | Technic | |
Tissue culture dish 150 | TPP | 93150 | |
Trichloro (1H, 1H, 2H, 2H perfluorooctyl) silane | Sigma Aldrich | Sigma Aldrich | used to silanize the silicane wafer |
Veeco Dektak 6 M | Veeco | Profilometer |