Un modelo quirúrgico de ratón para crear una lesión por isquemia de reperfusión (RI) del pulmón izquierdo mientras se mantiene la ventilación y se evita la hipoxia.
La lesión por isquemia de reperfusión (RI) con frecuencia resulta de procesos que implican un período transitorio de flujo sanguíneo interrumpido. En el pulmón, la RI aislada permite el estudio experimental de este proceso específico con ventilación alveolar continua, evitando así los procesos perjudiciales compuestos de hipoxia y atelectasia. En el contexto clínico, la lesión por isquemia pulmonar por reperfusión (también conocida como IRI pulmonar o LIRI) es causada por numerosos procesos, que incluyen, entre otros, embolia pulmonar, traumatismo hemorrágico resucitado y trasplante pulmonar. Actualmente hay opciones de tratamiento efectivas limitadas para LIRI. A continuación, presentamos un modelo quirúrgico reversible de IR pulmonar que incluye la primera intubación orotraqueal seguida de isquemia pulmonar izquierda unilateral y reperfusión con ventilación alveolar preservada o intercambio gaseoso. Los ratones se someten a una toracotomía izquierda, a través de la cual la arteria pulmonar izquierda se expone, visualiza, aísla y comprime usando un nudo deslizante reversible. La incisión quirúrgica se cierra durante el período isquémico, y el animal es despertado y extubado. Con el ratón respirando espontáneamente, la reperfusión se establece liberando el nudo deslizante alrededor de la arteria pulmonar. Este modelo de supervivencia clínicamente relevante permite la evaluación de la lesión pulmonar IR, la fase de resolución, los efectos posteriores sobre la función pulmonar, así como los modelos de dos golpes que involucran neumonía experimental. Si bien técnicamente es un desafío, este modelo se puede dominar en el transcurso de unas pocas semanas o meses con una eventual tasa de supervivencia o éxito del 80% -90%.
La lesión por isquemia reperfusión (RI) puede ocurrir cuando se restablece el flujo sanguíneo a un órgano o lecho de tejido después de un período de interrupción. En el pulmón, la RI puede ocurrir de forma aislada o en asociación con otros procesos perjudiciales como infección, hipoxia, atelectasia, volutrauma (por volúmenes corrientes altos durante la ventilación mecánica), barotrauma (altas presiones máximas o sostenidas durante la ventilación mecánica) o lesión por contusión pulmonar contundente (no penetrante) 1,2,3 . Sigue habiendo varias lagunas en el conocimiento acerca de los mecanismos de LIRI y el impacto de los procesos concurrentes (p.ej., infección) en los resultados de LIRI, y también las opciones de tratamiento para LIRI son limitadas. Se requiere un modelo in vivo de LIRI puro para identificar la fisiopatología de la lesión pulmonar IR de forma aislada y para estudiar su contribución a cualquier proceso de múltiples golpes del cual la lesión pulmonar sea un componente.
Los modelos de IR pulmonar murina se pueden utilizar para estudiar la fisiopatología específica del pulmón de múltiples procesos, incluido el trasplante pulmonar3, la embolia pulmonar4 y la lesión pulmonar después de un traumatismo hemorrágico con reanimación5. Los modelos utilizados actualmente incluyen trasplante quirúrgico de pulmón6, pinzamiento hiliar7, perfusión pulmonar ex vivo 8 y pulmón ventilado IR9. Aquí, proporcionamos un protocolo detallado para un modelo IR pulmonar ventilado murino de lesión pulmonar estéril. Hay múltiples beneficios de este enfoque (Figura 2), incluyendo que induce hipoxia mínima y atelectasia mínima, y es un modelo de cirugía de supervivencia que permite estudios a largo plazo.
Las razones para elegir este modelo de LIRI sobre otros modelos como el pinzamiento hiliar y los modelos de perfusión ex vivo son las siguientes: este modelo minimiza las contribuciones inflamatorias de la atelectasia, la ventilación mecánica y la hipoxia; preserva la ventilación cíclica; mantiene intacto el sistema inmunitario circulatorio in vivo que puede responder a la lesión IR; y, por último, como procedimiento de supervivencia, permite el análisis a más largo plazo de los mecanismos de generación de lesiones secundarias (modelos de 2 golpes) y la resolución de lesiones. En general, creemos que este modelo IR de pulmón ventilado proporciona la forma “más pura” de lesión IR que se puede estudiar experimentalmente.
Otras publicaciones han descrito el uso de la intubación orotraqueal de ratones para realizar inyecciones o instalaciones IT10,11, pero no como punto de partida para una cirugía de supervivencia como lo es en este modelo. La colocación de un tubo orotraqueal permite la realización de la cirugía pulmonar al permitir el colapso del pulmón operatorio. También permite la reinflación del pulmón al final del procedimiento, lo cual es crítico para el neumotórax y para la capacidad del ratón para volver a la ventilación espontánea al final de los procedimientos. Finalmente, la extracción del tubo orotraqueal asegurado es un procedimiento simple que, a diferencia de una traqueotomía invasiva, es compatible con una cirugía de supervivencia. Esto permite estudios de investigación a largo plazo centrados en la comprensión de la progresión y resolución de LIRI y trastornos asociados, así como la creación de modelos de lesiones crónicas.
Este manuscrito detalla los pasos involucrados en la realización del modelo IR de pulmón ventilado desarrollado por Dodd-o et al.9. Este modelo ha ayudado a identificar vías moleculares implicadas en la generación y resolución de la inflamación de la RI pulmonar aislada 14,15,16,17, la RI pulmonar en combinación con la infección coexistente 18, y la RI pulmonar en relación con el eje intestino-pulmón y la contribución del microbioma intestinal13…
The authors have nothing to disclose.
Este trabajo fue financiado por el apoyo departamental del Departamento de Anestesia y Atención Perioperatoria, la Universidad de California en San Francisco y el Hospital General de San Francisco, así como por un premio NIH R01 (a AP): 1R01HL146753.
Equipment | |||
Fiber Optic Light Pipe | Cole-Parmer | UX-41720-65 | Fiberoptic light pipe |
Fiber Optic Light Source | AmScope | SKU: CL-HL250-B | Light source for fiberoptic lights |
Germinator 500 | Cell Point Scientific, Inc. | No.5-1450 | Bead Sterilizer |
Heating Pad | AIMS | 14-370-223 | Alternative option |
Lithium.Ion Grooming Kits(hair clipper) | WAHL home products | SKU 09854-600B | To remove mouse hair on surgical site |
Microscope | Nikon | SMZ-10 | Other newer options available at the company website |
MiniVent Ventilator | Havard Apparatus | Model 845 | Mouse ventilator |
Ultrasonic Cleaner | Cole-Parmer | UX-08895-05 | Clean tools that been used in operation |
Warming Pad | Kent Scientific | RT-0501 | To keep mouse warm while recovering from surgery |
Weighing Scale | Cole-Parmer | UX-11003-41 | Weighing scale |
Surgery Tools | |||
4-0 Silk Suture | Ethicon | 683G | For closing muscle layer |
7-0 Prolene Suture | Ethicon Industry | EP8734H | Using for making a slip knot of left pulmonary artery |
Bard-Parker (11) Scalpel (Rib-Back Carbon Steel Surgical Blade, sterile, single use) | Aspen Surgical | 372611 | For entering thoracic cavity (option 1) |
Bard-Parker (12) Scalpel | Aspen Surgical | 372612 | For entering thoracic cavity (option 2) |
Extra Fine Graefe Forceps | FST | 11150-10 | Muscle/rib holding forceps |
Magnetic Fixator Retraction System | FST | 1. Base Plate (Nos. 18200-03) 2. Fixators (Nos. 18200-01) 3. Retractors (Nos. 18200-05 through 18200-12) 4. Elastomer (Nos.18200-07) 5. Retractor(No.18200-08) |
Small Animal Retraction System |
Monoject Standard Hypodermic Needle | COVIDIEN | 05-561-20 | For medication delivery IP |
Narrow Pattern Forceps | FST | 11002-12 | Skin level forceps |
Needle holder/Needle driver | FST | 12565-14 | for holding needles |
Needles | BD | 305110 | 26 gauge needle for externalizing slipknot (24 or 26 gauge needle okay too) |
PA/Vessel Dilating forceps | FST | 00125-11 | To hold PA; non-damaging gripper |
Scissors | FST | 14060-09 | Used for incision and cutting into the muscular layer durging surgery |
Ultra Fine Dumont micro forceps | FST | 11295-10 (Dumont #5 forceps, Biology tip, tip dimension:0.05*0.02mm,11cm) | For passing through the space between the left pulmonary artery and bronchus |
Reagents | |||
0.25% Bupivacaine | Hospira, Inc. | 0409-1159-02 | Topical analgesic used during surgical wound closure |
Avertin (2,2,2-Tribromoethanol) | Sigma-Aldrich | T48402-25G | Anesthetic, using for anesthetize the mouse for IR surgery, the concentration used in IR surgery is 250-400 mg/kg. |
Buprenorphine | Covetrus North America | 59122 | Analgesic: concentration used for surgery is 0.05-0.1 mg/kg |
Eye Lubricant | BAUSCH+LOMB | Soothe Lubricant Eye Ointment | Relieves dryness of the eye |
Povidone-Iodine 10% Solution | MEDLINE INDUSTRIES INC | SKU MDS093944H (2 FL OZ, topical antiseptic) | Topical liquid applied for an effective first aid antiseptic at beginning of surgery |
Materials | |||
Alcohol Swab | BD brand | BD 326895 | for sterilzing area of injection and surgery |
Plastic film | KIRKLAND | Stretch-Tite premium | Alternative for covering the sterilized surgical field (more cost effective) |
Rodent Surgical Drapes | Stoelting | 50981 | Sterile field or drape for surgical field |
Sterile Cotton Tipped Application | Pwi-Wnaps | 703033 | used for applying eye lubricant |
Top Sponges | Dukal Corporaton | Reorder # 5360 | Stopping bleeding from skin/muscle |