Статья основана на создании адаптированного протокола сканирования, обнаружения, сортировки и идентификации оцифрованных объектов, соответствующих бентическим речным макробеспозвоночным с использованием полуавтоматической процедуры визуализации. Эта процедура позволяет получить индивидуальные распределения размеров и показатели размера сообщества макробеспозвоночных примерно за 1 ч.
Размер тела является важной функциональной чертой, которая может быть использована в качестве биоиндикатора для оценки воздействия возмущений в природных сообществах. Структура размера сообщества реагирует на биотические и абиотические градиенты, включая антропогенные возмущения в таксонах и экосистемах. Однако ручное измерение мелкотелых организмов, таких как бентические макробеспозвоночные (например, >500 мкм до нескольких сантиметров в длину), занимает много времени. Чтобы ускорить оценку структуры размера сообщества, здесь мы разработали протокол полуавтоматического измерения индивидуального размера тела сохранившихся речных макробеспозвоночных, которые являются одним из наиболее часто используемых биоиндикаторов для оценки экологического состояния пресноводных экосистем. Этот протокол адаптирован из существующей методологии, разработанной для сканирования морского мезозоопланктона с помощью системы сканирования, предназначенной для проб воды. Протокол состоит из трех основных этапов: (1) сканирование подвыборок (мелких и грубых фракций размера выборки) речных макробеспозвоночных и обработка оцифрованных изображений для индивидуализации каждого обнаруженного объекта на каждом изображении; (2) создание, оценка и проверка обучающего набора с помощью искусственного интеллекта для полуавтоматического отделения отдельных изображений макробеспозвоночных от обломков и артефактов в отсканированных образцах; и 3) изображение размерной структуры сообществ макробеспозвоночных. В дополнение к протоколу эта работа включает результаты калибровки и перечисляет несколько проблем и рекомендаций по адаптации процедуры к образцам макробеспозвоночных и рассмотрению дальнейших улучшений. В целом, результаты подтверждают использование представленной сканирующей системы для автоматического измерения размеров тела речных макробеспозвоночных и свидетельствуют о том, что изображение их спектра размеров является ценным инструментом для быстрой биооценки пресноводных экосистем.
Бентические макробеспозвоночные широко используются в качестве биоиндикаторов для определения экологического состояния водных объектов1. Большинство индексов для описания сообществ макробеспозвоночных сосредоточены на таксономических показателях. Тем не менее, новые инструменты биооценки, которые интегрируют размер тела, поощряются для обеспечения альтернативной или дополнительной перспективы таксономических подходов 2,3.
Размер тела считается метатравмой, которая связана с другими жизненно важными чертами, такими как метаболизм, рост, дыхание и движение4. Кроме того, размер тела может определять трофическое положение и взаимодействия5. Связь между индивидуальным размером тела и нормализованной биомассой (или численностью) по классу размеров в сообществе определяется как спектр размеров6 и следует общей схеме линейного уменьшения нормализованной биомассы по мере увеличения индивидуального размера по логарифмической шкале7. Наклон этой линейной зависимости был тщательно изучен теоретически, и эмпирические исследования экосистем использовали его в качестве экологического индикатора структуры размера сообщества4. Другим синтетическим показателем структуры размеров сообществ, который успешно используется в исследованиях функционирования биоразнообразия и экосистем, является разнообразие размеров сообществ, которое представлено в виде индекса Шеннона классов размеров спектра размеров или его аналога, который рассчитывается на основе индивидуальных распределений размеров8.
В пресноводных экосистемах размерная структура различных групп фауны используется в качестве атаксического показателя для оценки реакции биотических сообществ на градиенты окружающей среды 9,10,11 и на антропогенные возмущения 12,13,14,15,16. Макробеспозвоночные не являются исключением, и их размерная структура также реагирует на изменения окружающей среды 17,18 и антропогенные возмущения, такие как добыча19, землепользование20 или обогащение азотом (N) и фосфором (P) 20,21,22. Тем не менее, измерение сотен людей для описания структуры размера сообщества является утомительной и трудоемкой задачей, которую часто избегают в качестве рутинного измерения в лабораториях из-за нехватки времени. Так, было разработано несколько полуавтоматических или автоматических методов визуализации для классификации и измерения образцов 23,24,25,26. Однако большинство этих методов ориентированы на таксономическую классификацию больше, чем на индивидуальные размеры организмов и не готовы к использованию для всех видов макробеспозвоночных. В экологии морского планктона система анализа сканирующих изображений широко используется для определения размера и таксономического состава сообществ зоопланктона 27,28,29,30,31. Этот инструмент можно найти в нескольких морских институтах по всему миру, и он используется для сканирования сохранившихся образцов зоопланктона для получения цифровых изображений с высоким разрешением всего образца. Настоящий протокол адаптирует использование этого инструмента для быстрой автоматической оценки спектра размеров сообщества макробеспозвоночных в реках без затрат на создание нового устройства.
Протокол состоит из сканирования образца и обработки всего изображения для автоматического получения отдельных изображений (т.е. виньеток) объектов в образце. Несколько измерений формы, размера и особенностей уровня серого характеризуют каждый объект и позволяют автоматически классифицировать объекты по категориям, которые затем проверяются экспертом. Индивидуальный размер каждого организма рассчитывается с использованием эллипсоидального биообъема (мм3), который выводится из области организма, измеренной в пикселях. Это позволяет быстро получить спектр размеров образца. Насколько нам известно, эта сканирующая система визуализации использовалась только для обработки образцов мезозупланктона, но устройство потенциально может позволить работать с пресноводными бентическими макробеспозвоночными.
Таким образом, общая цель этого исследования состоит в том, чтобы внедрить метод быстрого получения индивидуального размера сохраненных речных макробеспозвоночных путем адаптации существующего протокола, ранее использовавшегося с морским мезозоопланктоном 27,32,33. Процедура состоит из использования полуавтоматического подхода, который работает со сканирующим устройством для сканирования образцов воды и тремя открытыми программными средствами для обработки отсканированных изображений. Здесь представлен адаптированный протокол для сканирования, обнаружения и идентификации оцифрованных речных макробеспозвоночных для автоматического получения структуры размера сообщества и связанных с ним показателей размера. Оценка процедуры и руководящие принципы повышения эффективности также представлены на основе 42 отсканированных изображений образцов речных макробеспозвоночных, собранных из трех бассейнов северо-восточного (NE) Пиренейского полуострова (Ter, Segre-Ebre и Besòs).
Пробы были взяты на 100-метровых речных участках в соответствии с протоколом отбора проб в полевых условиях и лабораторного анализа бентических речных макробеспозвоночных в переходных реках от правительстваИспании 34. Образцы были собраны с помощью пробоотборника (рамка: 0,3 м х 0,3 м, сетка: 250 мкм) после обследования нескольких мест обитания. В лаборатории образцы очищали и просеивали через сетку 5 мм и 500 мкм для получения двух подвыборок: грубого подвыборки (сетка 5 мм) и тонкой подвыборки (сетка 500 мкм), которые хранились в отдельных флаконах и сохранялись в 70% этаноле. Разделение выборки на две размерные фракции позволяет лучше оценить структуру размера сообщества, поскольку крупные организмы встречаются реже и меньше, чем мелкие организмы. В противном случае отсканированный образец имеет предвзятое представление фракции большого размера.
Адаптация методологии, описанной Gorsky et al. 2010 для речных макробеспозвоночных, позволяет обеспечить высокую точность классификации при оценке структуры размеров сообщества у пресноводных макробеспозвоночных. Результаты показывают, что протокол может сократить время оценки индивидуал…
The authors have nothing to disclose.
Эта работа была поддержана Министерством науки, инноваций и университетов Испании (номер гранта RTI2018-095363-B-I00). Мы благодарим членов CERM-UVic-UCC Элию Бречу, Анну Костарросу, Лайю Хименес, Марию Изабель Гонсалес, Марту Ютглар, Франческа Ллаха и Нурию Селларес за их работу в области отбора проб макробеспозвоночных и лабораторной сортировки и Дэвида Альбеса за сотрудничество в сканировании образцов. Наконец, мы благодарим Хосепа Марию Гили и Институт сертификации Мара (ICM-CSIC) за использование лабораторной базы и сканера.
Beaker | Labbox | Other containers could be used | |
Dionized water | Icopresa | 8420239600123 | To dilute the ethanol |
Funnel | Vitlab | 41094 | |
Glass vials 8 ml | Labbox | SVSN-C10-195 | 1 vial/subsample |
ImageJ Software | Free access | Version 4.41o/ Image processing software | |
Large frame | Hydroptic | Provided by ZooScan | 24.5 cm x 15.8 cm |
Monalcol 96 (Ethanol 96) | Montplet | 1050JE001 | |
Plankton Identifier Software | Free access | Version 1.2.6/ Automatic identification software | |
Sieve | Cisa | 26852.2 | Nominal aperture 500µ and nominal aperture 0,5 cm |
Tweezers | Bondline | B5SA | Stainless, anti-magnetic, anti-acid |
VueScan 9 x 64 (9.5.09) Software | Hydroptic | Version 9.0.51/ Sacn software | |
Wooden needle | Any plastic or wood needle can be used | ||
Zooprocess Software | Free access | Version 7.14/Image processing software | |
ZooScan | Hydroptic | 54 | Version III/ Scanner |