In this paper, we describe a protocol for in vivo imaging of microglial Ca2+ activity and subsequent analysis of its spatiotemporal dynamics. This method enables thorough characterization of how microglia respond to changes in the brain environment, appropriately capturing the fine spatiotemporal scales at which such events occur.
Microglia are the sole resident immune cells in the central nervous system. Their morphology is highly plastic, changing depending on their activity. Under homeostatic conditions, microglia possess a highly ramified morphology. This facilitates their monitoring of the surrounding environment through the continuous extending and retracting of their processes. During brain injury and inflammation, however, microglia become activated and undergo dramatic morphological changes, retracting their ramified processes and swelling their cell body. This facilitates activities such as migration and phagocytosis, which microglia undertake to navigate the brain environment to a less pathological state.
This close relationship between microglial morphology and changes in their activity have enabled considerable insights into various microglial functions. However, such morphological and activity changes are themselves phenomena that can result from any number of intracellular signaling pathways. Moreover, the time-lag between stimulus and response, as well as the highly compartmentalized morphology of microglia, make it difficult to isolate the causative mechanisms that underpin function. To solve this problem, we developed a genetically modified mouse line in which a highly sensitive fluorescent Ca2+-indicator protein is specifically expressed in microglia.
After describing methods for in vivo microglial Ca2+ imaging, this paper presents a structured analysis approach that classifies this Ca2+ activity to rationally defined subcellular regions, thus ensuring that the spatial and temporal dimensions of the encoded information are meaningfully extracted. We believe that this approach will provide a detailed understanding of the intracellular signaling rules that govern the diverse array of microglial activities associated with both higher brain functions and pathological conditions.
Microglia are the resident immune cells in the central nervous system (CNS) and play important roles in maintaining a homeostatic brain environment and in regulating neural circuit formation during brain development1,2. A unique feature of microglia in the CNS is that their morphology is highly plastic; however, distinct morphological phenotypes can be associated with particular functions. Furthermore, the transformation between morphological phenotypes is highly dynamic, occurring on rapid time scales in response to changes in the surrounding environment3,4.
Under homeostatic physiological conditions, microglia assume a highly ramified morphology, with multiple processes radiating outward in all directions. These ramified processes themselves demonstrate high motility, continuously extending and retracting3,4. Such activity is primarily directed toward periodic contact with neuronal synapses, axons, and somas to monitor neuronal activity5,6,7,8,9. However, when the brain is injured, microglia quickly detect this abnormality, and as a first step in their adaptive response, direct the extension of their processes toward the corresponding locale3,4. Where microglia are required to undertake phagocytosis of dead cells and metabolites, they assume an amoeboid-like morphology, shortening their processes and enlarging their cell bodies, as part of their transition into the immunologically activated phenotype10,11.
However, whilst the dramatic morphological changes of microglial processes are easily detected, finer scale changes of the cell soma are significantly more difficult to capture, especially at a temporal resolution that is physiologically relevant. Furthermore, morphological changes themselves only represent the integrated result of any number of intracellular signaling pathways. This is problematic for a goal of tracking functional activity and mechanistically linking a stimulus with the end response it provokes.
Given its widespread role as a second messenger, examining intracellular Ca2+ dynamics better captures the associated spatiotemporal information when studying dynamic cell processes. Such an approach is applicable to microglia given that they express a variety of ionotropic and metabotropic receptors linked to downstream intracellular Ca2+ elevation. Indeed, in vivo Ca2+ imaging has been used to characterize spatiotemporal aspects of microglial activities in real time, successfully correlating changes in microglial Ca2+ activity with brain injury, inflammation, and both hyper- and hypoactivity in neurons12,13,14,15,16. For example, Ca2+ elevations associated with microglial process extension in response to hyper/hypoactive neuronal activity likely reflect the underlying Ca2+-dependent actin polymerization process16. Furthermore, in vivo Ca2+ imaging can also be readily combined with pharmacological approaches. For example, whilst microglia express both P2X (ionotropic) and P2Y (metabotropic) receptors, local application of P2Y agonists mimics and subsequently desensitizes the microglial Ca2+ response to damaged neighboring neurons13, thus implying the greater relevance of P2Y signaling to neuronal damage detection.
To date, previous reports examining microglial Ca2+ activity have employed region of interest (ROI)-based analysis methods. A drawback of these approaches is that they are still too coarse to be able to resolve the spatiotemporal dynamics of Ca2+ activity at the level of individual microglial processes. Thus, this protocol describes both conventional ROI-based methods for analyzing microglial Ca2+ activity and newer event-based approaches, which can extract individual Ca2+ events in microglial processes. Before this, we provide a general guide for in vivo two-photon imaging to appropriately capture microglial Ca2+ activity for detailed analysis.
This paper introduces an improved approach for imaging microglial Ca2+ activity with a high spatiotemporal resolution. This method is sensitive enough to detect different types of microglial Ca2+ activity at the level of single ramified processes, readily distinguishing between local and propagative events.
In the general method for in vivo two-photon imaging of microglial Ca2+ activity, careful attention must be paid to the following points to maximize imaging quality. First, as microglia are extremely sensitive to injury, it is important to minimize directly touching the surface of the brain with surgical tools during surgery. Key indications that surgery has been proficiently performed are intact blood vessels and dura and very minimal bleeding during surgery. Second, secure attachment of the head-plate to the mouse's skull and good contact between the double coverslip and brain surface greatly reduce motion-related artifacts whilst imaging. This is especially important when imaging with high spatiotemporal resolutions and in fully awake mice. Whilst the analysis pipeline reliably compensates for motion-related artifacts arising from the heartbeat, respiration, and general drift, it is less robust when handling significant geometric distortions that arise from sudden large movements.
The two analysis methods described here offer different advantages and are suited to different research questions. In ROI-based analysis, the user predefines the ROI (such as individual processes), allowing for the aggregate dynamics of Ca2+ activity of this ROI to be extracted. Thus, it is most suited to situations where phenomena are expected to be localized to a subcellular area that has both well-defined morphological boundaries and a relatively large area (i.e., a process branch). In event-based analysis, individual events are defined based on the spatiotemporal dynamics of the microglial Ca2+ activity itself and must then be placed in the context of user-defined landmarks within the microglia for their function to be interpreted. Thus, it is most suited to situations where assumptions about phenomena localization cannot be made or where the area of interest is relatively small (i.e., a process tip). As such, event-based analysis offers improved spatiotemporal resolution when characterizing microglial Ca2+ activity as compared to previous methods.
In these mice, the only fluorescent marker expressed by microglia is the Ca2+ indicator GCaMP6. Thus, in regions where Ca2+ activity is low, microglial morphology must be extracted by combining multiple time frames, which can degrade temporal resolution. However, this limitation can be overcome by expressing a separate red stably-fluorescent protein in microglia. Notably, novel adeno-associated viruses capable of transfecting microglia have recently been described23,24,25.
How microglial Ca2+ activity is altered by the surrounding environment is an emerging topic of interest. In particular, microglial Ca2+ activity appears to show significant correlations with neuronal activity, though the functional significance of this has yet to be thoroughly characterized. Thus, combining neuronal activity manipulation with the imaging and analysis methods for microglial Ca2+ activity presented here should yield new insights into microglial physiology and further advance our understanding of the roles that microglia play in physiological and pathological states.
The authors have nothing to disclose.
We are grateful to Prof. Kenji Tanaka (Keio University, Tokyo, Japan) for providing Iba1-tTA mice and tetO-GCaMP6 mice. This work was supported by Grants-in-Aid for Young Scientists (B) [16K19001 (to H.H.)], Grants-in-Aid for Early-Career Scientists [18K14825 (to H.H.)], Grant-in-Aid for Scientific Research (B) [21H03027 (to H.H.)], Grant-in-Aid for Transformative Research Areas (A) [21H05639 (to H.H.)], Grant-in-Aid for Scientific Research (A) [17H01530, 20H00500 (to J.N.)], and JST CREST Grant [JPMJCR1755 (to J.N.)], Japan.
2% xylocaine jelly | AstraZeneca, UK | ||
B6(129S6)-Tg(Aif1-tTA)54Kftnk | RIKEN RBC, Japan | RBRC05769 | Iba1-tTA mice |
B6;129-Actb(tm3.1(tetO-GCaMP6)Kftnk) | RIKEN RBC, Japan | RBRC09552 | tetO-GCaMP6 mice |
Forceps | Fine science tools, US | 13008-12 | |
G-CEM ONE | GC corporation, Japan | ||
Glass capillary | Narishige, Japan | GDC-1 | |
ImageJ | NIH, US | ||
Isofulrane | Pfizer, US | ||
Ketamin | Daiichi-Sankyo, Japan | ||
Kwik-sil | World Precision Instruments, US | KWIK-SIL | |
MATLAB, 2017b | MathWorks, US | ||
Micro cover glass (2 x 2 mm, No.3) | Matsunami, Japan | custum-made | Bottom glass for cranial window |
Micro cover glass (3 x 3 mm, No.0) | Matsunami, Japan | custum-made | Upper glass for cranial window |
N25X-APO-MP | Nikon, Japan | N25X-APO-MP | Objective lens (25x) |
Norland optical adhesive | Edmund optics, US | 6101 | |
Piezo nano-positioning system, Nano-Drive | Mao City Labs, US | ||
Razor blade | Feather, Japan | FA-10 | |
Scissors | Fine science tools, US | 14060-11 | |
Steel drill | Minitor, Japan | BS1201 | |
Stereotaxic instruments | Narishige, Japan | SR-5M-HT | |
Super-bond (C&B kit) | Sun Medical, Japan | 4560227797382 | |
Surgical needle hook | Fine science tools, US | 10065-15 | |
Ti:Sappire laser, MaiTai DeepSee | Spectra Physics, US | Mai Tai eHP DS | |
Tweezers | Fine science tools, US | 11051-10 | |
Tweezers | Fine science tools, US | 11255-20 | |
Two-photon microscope | Nikon, Japan | A1R-MP | |
UV craft resin | Kiyohara, Japan | UVR | |
Xylazine | Bayer, Germany |
.