Ce protocole décrit une méthode de purification eucaryote des polysomes à partir de nodules de soja intacts. Après le séquençage, des pipelines standard pour l’analyse de l’expression génique peuvent être utilisés pour identifier les gènes exprimés différentiellement aux niveaux du transcriptome et du translatome.
L’objectif de ce protocole est de fournir une stratégie pour étudier le translatome eucaryote du nodule symbiotique du soja (Glycine max). Cet article décrit des méthodes optimisées pour isoler les polyribosomes dérivés de plantes et leurs ARNm associés à analyser à l’aide du séquençage de l’ARN. Premièrement, les lysats cytoplasmiques sont obtenus par homogénéisation dans des conditions de préservation des polysomes et de l’ARN à partir de nodules de soja entiers congelés. Ensuite, les lysats sont éliminés par centrifugation à basse vitesse, et 15% du surnageant est utilisé pour l’isolement de l’ARN total (TOTAL). Le lysat éliminé restant est utilisé pour isoler les polysomes par ultracentrifugation à travers un coussin de saccharose à deux couches (12% et 33,5%). L’ARNm associé aux polysomes (PAR) est purifié à partir de pastilles polysomiques après remise en suspension. TOTAL et PAR sont évalués par électrophorèse capillaire très sensible pour répondre aux normes de qualité des bibliothèques de séquençage pour le séquençage de l’ARN-seq. À titre d’exemple d’application en aval, après séquençage, des pipelines standard pour l’analyse de l’expression génique peuvent être utilisés pour obtenir des gènes exprimés différentiellement aux niveaux du transcriptome et du translatome. En résumé, cette méthode, en combinaison avec le séquençage de l’ARN, permet l’étude de la régulation translationnelle des ARNm eucaryotes dans un tissu complexe tel que le nodule symbiotique.
Les légumineuses, comme le soja (Glycine max), peuvent établir une symbiose avec des bactéries spécifiques du sol appelées rhizobiums. Cette relation mutualiste provoque la formation de nouveaux organes, les nodules symbiotiques, sur les racines des plantes. Les nodules sont les organes végétaux hébergeant la bactérie et sont constitués de cellules hôtes dont le cytoplasme est colonisé par une forme spécialisée de rhizobiums appelée bactéroïdes. Ces bactéroïdes catalysent la réduction de l’azote atmosphérique (N2) en ammoniac, qui est transféré à la plante en échange de glucides 1,2.
Bien que cette symbiose fixatrice d’azote soit l’une des symbioses plantes-microbes les mieux étudiées, de nombreux aspects restent à mieux comprendre, tels que la façon dont les plantes soumises à différentes conditions de stress abiotique modulent leur interaction avec leur partenaire symbiotique et comment cela affecte le métabolisme des nodules. Ces processus pourraient être mieux compris en analysant le translatome nodule (c’est-à-dire le sous-ensemble d’ARN messagers [ARNm] activement traduit). Les polyribosomes ou polysomes sont des complexes de ribosomes multiples associés à l’ARNm, couramment utilisés pour étudier la traduction3. La méthode de profilage des polysomes consiste en l’analyse des ARNm associés aux polysomes et a été utilisée avec succès pour étudier les mécanismes posttranscriptionnels contrôlant l’expression des gènes qui se produisent dans divers processus biologiques 4,5.
Historiquement, l’analyse de l’expression du génome s’est principalement concentrée sur la détermination de l’abondance de l’ARNm 6,7,8,9. Cependant, il y a un manque de corrélation entre les niveaux de transcrits et de protéines en raison des différentes étapes de la régulation post-transcriptionnelle de l’expression génique, en particulier la traduction10,11,12. De plus, aucune dépendance n’a été observée entre les changements au niveau du transcriptome et ceux qui se produisent au niveau du translatome13. L’analyse directe de l’ensemble des ARNm en cours de traduction permet une mesure plus précise et complète de l’expression génique cellulaire (dont le critère d’évaluation est l’abondance des protéines) que celle obtenue lorsque seuls les niveaux d’ARNm sont analysés14,15,16.
Ce protocole décrit comment les polysomes d’origine végétale sont purifiés à partir de nodules de soja intacts par centrifugation différentielle à travers un coussin de saccharose à deux couches (Figure 1). Cependant, comme les ribosomes dérivés de bactéroïdes sont également présents dans les nodules, un mélange d’espèces de ribosomes et d’ARN est purifié, même si les eucaryotes représentent la fraction principale (90%-95%). L’isolement, la quantification et le contrôle de la qualité de l’ARN qui s’ensuivent sont également décrits (figure 1). Ce protocole, en combinaison avec RNA-seq, devrait fournir des résultats expérimentaux sur la régulation translationnelle des ARNm eucaryotes dans un tissu complexe tel que le nodule symbiotique.
Figure 1 : Aperçu schématique de la méthodologie proposée pour la purification des polysomes eucaryotes à partir de nodules symbiotiques. Le schéma donne un aperçu des étapes suivies dans le protocole depuis (1) la croissance des plantes et (2) la récolte des nodules jusqu’à (3) la préparation des extraits cytosoliques, (3) l’obtention d’échantillons TOTAL et (4) d’échantillons PAR, et (5) l’extraction de l’ARN et le contrôle de la qualité. Abréviations : PEB = tampon d’extraction de polysomes; RB = tampon de remise en suspension; TOTAL = ARN total; PAR = ARNm associé aux polysomes. Veuillez cliquer ici pour voir une version agrandie de cette figure.
L’étude de la régulation de l’expression génique au niveau translationnel est essentielle pour mieux comprendre les différents processus biologiques puisque le critère d’évaluation de l’expression génique cellulaire est l’abondance des protéines13,14. Ceci peut être évalué en analysant le translatome du tissu ou de l’organisme d’intérêt pour lequel la fraction polysomale doit être purifiée et ses ARNm associés…
The authors have nothing to disclose.
Cette recherche a été financée par la subvention 282 de la SCCI I+D 2020, la subvention FVF 2017 n° 210 et PEDECIBA (María Martha Sainz).
Plant growth and rhizobia inoculation | |||
Orbital shaker | Daihan Scientific | Model SHO-1D | |
YEM-medium | Amresco | J850 (yeast extract) 0122 (mannitol) | |
Water deficit treatment | |||
KNO3 | Merck | 221295 | |
Porometer | Decagon Device | Model SC-1 | |
Scalpel | |||
Preparation of cytosolic extracts | |||
Brij L23 | Sigma-Aldrich | P1254 | |
Centrifuge | Sigma | Model 2K15 | |
Chloranphenicol | Sigma-Aldrich | C0378 | |
Cycloheximide | Sigma-Aldrich | C7698 | |
DOC | Sigma-Aldrich | 30970 | |
DTT | Sigma-Aldrich | D9779 | |
EGTA | Sigma-Aldrich | E3889 | |
Igepal CA 360 | Sigma-Aldrich | I8896 | |
KCl | Merck | 1.04936 | |
MgCl2 | Sigma-Aldrich | M8266 | |
Plastic tissue grinder | Fisher Scientific | 12649595 | |
PMSF | Sigma-Aldrich | P7626 | |
PTE | Sigma-Aldrich | P2393 | |
Tris | Invitrogen | 15504-020 | |
Triton X-100 | Sigma-Aldrich | T8787 | |
Tween 20 | Sigma-Aldrich | P1379 | |
Weighing dish | Deltalab | 1911103 | |
Preparation of sucrose cushions | |||
Sucrose | Invitrogen | 15503022 | |
SW 40 Ti rotor | Beckman-Coulter | ||
Ultracentrifuge | Beckman-Coulter | Optima L-100K | |
Ultracentrifuge tubes | Beckman-Coulter | 344059 | 13.2 mL tubes |
RNA extraction and quality control | |||
Agarose | Thermo scientific | R0492 | |
Bioanalyzer | Agilent | Model 2100. Eukaryote total RNA nano assay | |
Chloroform | DI | 41191 | |
Ethanol | Dorwil | UN1170 | |
Isopropanol | Mallinckrodt | 3032-06 | |
Glycogen | Sigma | 10814-010 | |
TRIzol LS | Ambion | 102960028 | |
Miscellaneous | |||
Falcon tubes 15 mL | Biologix | 10-0152 | |
Filter tips 10 µL | BioPointe Scientific | 321-4050 | |
Filter tips 1000 µL | BioPointe Scientific | 361-1050 | |
Filter tips 20 µL | BioPointe Scientific | 341-4050 | |
Filter tips 200 µL | Tarsons | 528104 | |
Microcentrifuge tubes 1.5 mL | Tarsons | 500010-N | |
Microcentrifuge tubes 2.0 mL | Tarsons | 500020-N | |
Sequencing company | Macrogen | ||
Sterile 250 mL flask | Marienfeld | 4110207 |