Цыпленок является экономически эффективным, доступным и широко доступным модельным организмом для различных исследований. Здесь подробно описан ряд протоколов, чтобы понять молекулярные механизмы, лежащие в основе развития и регенерации внутреннего уха птиц.
Внутреннее ухо воспринимает звук и поддерживает равновесие с помощью улитки и преддверия. Он делает это, используя специальный тип механосенсорных клеток, известный как волосковая клетка. Фундаментальные исследования во внутреннем ухе привели к глубокому пониманию того, как функционируют волосковые клетки, и как дисрегуляция может привести к потере слуха и головокружению. Для этого исследования мышь была выдающейся модельной системой. Однако мыши, как и все млекопитающие, утратили способность заменять волосковые клетки. Таким образом, при попытке понять клеточную терапию для восстановления функции внутреннего уха, дополнительные исследования на других видах позвоночных могут дать дальнейшее понимание. Слуховой эпителий птиц, базилярный сосочек (АД), представляет собой лист эпителия, состоящий из механосенсорных волосковых клеток (ГК), интеркалированных поддерживающими клетками (СК). Хотя анатомическая архитектура базилярного сосочки и улитки млекопитающих отличается, молекулярные механизмы развития внутреннего уха и слуха схожи. Это делает базилярный сосочек полезной системой не только для сравнительных исследований, но и для понимания регенерации. Здесь мы описываем методы рассечения и манипуляции для внутреннего уха курицы. Методика показывает генетические методы и методы ингибирования малых молекул, которые предлагают мощный инструмент для изучения молекулярных механизмов развития внутреннего уха. В этой статье мы обсуждаем методы электропорации ovo для генетического возмущения базилярного сосочка с использованием делеций CRIPSR-Cas9 с последующим рассечением базилярного сосочки. Мы также демонстрируем культуру органов АД и оптимальное использование культуральных матриц, чтобы наблюдать за развитием эпителия и волосковых клеток.
Внутреннее ухо всех позвоночных получено из простого эпителия, известного как отический плакод 1,2. Это приведет к появлению всех структурных элементов и типов клеток, необходимых для передачи механосенсорной информации, связанной со слухом и восприятием равновесия. Волосковые клетки (ГК), реснитчатый датчик внутреннего уха, окружены поддерживающими клетками (СК). ГК передают информацию слуховому заднему мозгу через нейроны восьмого черепного нерва. Они также генерируются из otic placode3. Первичная трансдукция звука достигается на апикальной поверхности слухового HC, через механически чувствительный пучок волос4. Это опосредовано через модифицированные протрузии на основе актина, называемые стереоцилиями, которые расположены в градуированном лестничном шаблоне5. Кроме того, модифицированная первичная ресничка, называемая киноцилиумом, организует образование пучков волос и примыкает к самому высокому ряду стереоцилий 6,7,8. Архитектура стереоцилий имеет решающее значение для этой роли в преобразовании механических стимулов, полученных из акустической энергии, в электрические нейронные сигналы9. Повреждение слухового HC в результате старения, инфекции, отоакустической травмы или ототоксического шока может привести к частичной или полной потере слуха, которая у млекопитающих необратима10.
Была предложена клеточная заместительная терапия, которая может восстановить такое повреждение11,12. Подход этого исследования заключался в том, чтобы понять нормальное развитие волосковых клеток млекопитающих и спросить, могут ли программы развития быть восстановлены в клетках-предшественниках, которые могут существовать во внутреннем ухе13. Второй подход заключался в том, чтобы смотреть за пределы млекопитающих, на позвоночных, не являющихся млекопитающими, у которых происходит надежная регенерация слуховых волосковых клеток, таких как птицы14,15. У птиц регенерация волосковых клеток происходит преимущественно путем дедифференцировки поддерживающей клетки до состояния, подобного предшественнику, с последующим асимметричным митотическим делением для генерации волосковой клетки и поддерживающей клетки16. Кроме того, также наблюдалась прямая дифференцировка поддерживающей клетки для генерации волосковойклетки 17.
В то время как механизмы развития слуха птиц действительно показывают значительное сходство с механизмами развития млекопитающих, существуют различия18. Дифференциация HC и SC у цыплят АД проявляется с эмбрионального дня (E) 7, становясь более отчетливой с течением времени. По E12 можно визуализировать хорошо структурированный и хорошо поляризованный базилярный сосочек (АД), а по E17 хорошо развитые волосковые клетки можно увидеть19. Эти временные точки обеспечивают окна в механизмы дифференцировки, паттерна и полярности, а также созревания волосковых клеток. Понимание того, сохраняются ли такие механизмы или расходятся, важно, поскольку они дают представление о глубокой гомологии происхождения механосенсорных волосковых клеток.
Здесь мы демонстрируем множество методов, выполняемых на ранних и поздних эмбриональных стадиях для изучения клеточных процессов, таких как пролиферация, спецификация судьбы, дифференциация, паттерн и поддержание на протяжении всего развития органа внутреннего уха. Это дополняет другие протоколы по пониманию развития внутреннего уха в культуре экспланта 20,21,22. Сначала мы обсудим введение экзогенной ДНК или РНК в предшественники АД в отоцисте Е3,5 с использованием в электропорации ово. Хотя генетические манипуляции могут дать ценную информацию, фенотипы, генерируемые таким образом, могут быть плейотропными и, следовательно, смешивать. Это особенно верно во время более позднего развития внутреннего уха, где фундаментальные процессы, такие как ретоскелетное ремоделирование, играют множество ролей в делении клеток, морфогенезе тканей и клеточной специализации. Мы представляем протоколы фармакологического ингибирования в культивируемых эксплантатах, которые предлагают преимущества в контроле дозировки, сроков и продолжительности лечения, предлагая точные пространственно-временные манипуляции с механизмами развития.
Различные методы культивирования органов могут быть использованы в зависимости от продолжительности лечения небольшими ингибиторами. Здесь мы демонстрируем два метода культуры органов, которые позволяют понять эпителиальный морфогенез и клеточную специализацию. Метод 3D-культуры с использованием коллагена в качестве матрицы для культивирования кохлеарного протока обеспечивает надежное культивирование и живую визуализацию развивающегося АД. Для понимания формирования стереоцилий мы представляем метод мембранной культуры, такой, что эпителиальная ткань культивируется на жесткой матрице, позволяющей актиновым протрузиям свободно расти. Оба метода позволяют проводить последующую обработку, такую как визуализация живых клеток, иммуногистохимия, сканирующая электронная микроскопия (SEM), запись клеток и т. Д. Эти методы обеспечивают дорожную карту для эффективного использования цыпленка в качестве модельной системы для понимания и манипулирования развитием, созреванием и регенерацией слухового эпителия птицы.
Цыпленок является экономически эффективным и удобным дополнением к модельным организмам, которые лаборатория может использовать для исследования внутреннего уха. Методы, описанные здесь, обычно используются в нашей лаборатории и дополняют текущие исследования во внутреннем ухе мле?…
The authors have nothing to disclose.
Мы с благодарностью признаем поддержку со стороны NCBS, TIFR, Infosys-TIFR Leading Edge Research Grant, DST-SERB и Королевского национального института для глухих. Мы хотели бы поблагодарить Центральную организацию развития птицеводства и Учебный институт, Хесарагатта, Бангалор. Мы благодарны CIFF и EM и лабораторной поддержке в NCBS. Мы благодарим Йошико Такахаси и Коити Каваками за конструкции Tol2-eGFP и T2TP, а также Гая Ричардсона за антитела HCA и G19 Pcdh15. Мы благодарны членам Earlab за их постоянную поддержку и ценные отзывы о протоколе.
Alexa Fluor 488 Phalloidin | Thermo Fisher Scientific | A12379 | |
Alexa Fluor 647 Phalloidin | Thermo Fisher Scientific | A22287 | |
Alt-R S.p. HiFi Cas9 Nuclease V3 | Integrated DNA Technologies | 1081061 | High fidelity Cas9 protein |
Anti-GFP antibody | Abcam | ab290 | Rabbit polyclonal to GFP |
Bovine Serum Albumin | Sigma-Aldrich | A9647 | |
Calcium Chloride Dihydrate | Thermo Fisher Scientific | Q12135 | |
Collagen I, rat tail | Thermo Fisher Scientific | A1048301 | |
Critical Point Dryer Leica EM CPD300 | Leica | ||
CUY-21 Electroporator | Nepagene | ||
Dimethyl sulfoxide (DMSO) | Sigma-Aldrich | D8418 | |
DM5000B Widefield Microscope | Leica | ||
DMEM, high glucose, GlutaMAX Supplement, pyruvate | Thermo Fisher Scientific | 10569010 | |
Dumont #5 Forceps | Fine Science Tools | 11251-20 | |
Dumont #55 Forceps | Fine Science Tools | 11255-20 | |
Fast Green FCF | Sigma-Aldrich | F7252 | |
Fluoroshield | Sigma-Aldrich | F6182 | |
FLUOVIEW 3000 Laser Scanning Microscope | Olympus | ||
Glutaraldehyde (25 %) | Sigma-Aldrich | 340855 | |
Goat anti-Mouse IgG Secondary Antibody, Alexa Fluor 488 | Thermo Fisher Scientific | A-11001 | |
Goat anti-Mouse IgG Secondary Antibody, Alexa Fluor 594 | Thermo Fisher Scientific | A-11032 | |
Goat anti-Rabbit IgG Secondary Antibody, Alexa Fluor 488 | Thermo Fisher Scientific | A-11008 | |
Goat Serum Sterile filtered | HiMedia | RM10701 | Heat inactivated |
Hanks' Balanced Salt Solution (HBSS) | Thermo Fisher Scientific | 14025092 | |
LSM980 Airyscan Microscope | Zeiss | ||
Millicell Cell Culture Insert, 30 mm, hydrophilic PTFE, 0.4 µm | Sigma-Aldrich | PICM03050 | |
MVX10 Stereo Microscope | Olympus | ||
MYO7A antibody | DSHB | 138-1 | Mouse monoclonal to Unconventional myosin-VIIa |
MZ16 Dissecting microscope | Leica | ||
N-2 Supplement (100X) | Thermo Fisher Scientific | 17502048 | |
Noyes Scissors, 14cm (5.5'') | World Precision Instruments | 501237 | |
Osmium tetroxide (4%) | Sigma-Aldrich | 75632 | |
Paraformaldehyde | Sigma-Aldrich | 158127 | |
PC-10 Puller | Narishige | ||
pcU6_1sgRNA | Addgene | 92395 | Mini vector with modified chicken U6 promoter |
Penicillin G sodium salt | Sigma-Aldrich | P3032 | |
Phosphate Buffered Saline (PBS) | Thermo Fisher Scientific | 10010023 | |
ProLong Gold Antifade Mountant | Thermo Fisher Scientific | P36934 | |
SMZ1500 Dissecting microscope | Nikon | ||
Sodium Cacodylate Buffer, 0.2M | Electron Microscopy Sciences | 11652 | |
Sodium chloride | HiMedia | GRM853 | |
Sputtre Coater K550X | Emitech | ||
Standard Glass Capillaries 3 in, OD 1.0 mm, No Filament | World Precision Instruments | 1B100-3 | |
Sucrose | Sigma-Aldrich | 84097 | |
The MERLIN Compact VP | Zeiss | ||
Thiocarbohydrazide | Alfa Aesar | L01205 | |
TWEEN 20 | Sigma-Aldrich | P1379 |