Summary

Generazione di un modello riproducibile di attivazione immunitaria materna a metà gestazionale utilizzando poli (I: C) per studiare la suscettibilità e la resilienza nella prole

Published: August 17, 2022
doi:

Summary

L’infezione materna è un fattore di rischio per i disturbi dello sviluppo neurologico. I modelli murini di attivazione immunitaria materna (MIA) possono chiarire l’impatto dell’infezione sullo sviluppo e sulla funzione del cervello. Qui vengono fornite linee guida generali e una procedura per produrre una prole resiliente e suscettibile esposta a MIA.

Abstract

L’attivazione immunitaria materna (MIA) durante la gravidanza è costantemente legata ad un aumentato rischio di disturbi dello sviluppo neurologico e neuropsichiatrico nella prole. I modelli animali di MIA sono utilizzati per testare la causalità, studiare i meccanismi e sviluppare diagnostica e trattamenti per questi disturbi. Nonostante il loro uso diffuso, molti modelli di MIA soffrono di una mancanza di riproducibilità e quasi tutti ignorano due aspetti importanti di questo fattore di rischio: (i) molti figli sono resilienti al MIA e (ii) la prole suscettibile può mostrare combinazioni distinte di fenotipi. Per aumentare la riproducibilità e modellare sia la suscettibilità che la resilienza alla MIA, l’immunoreattività basale (BIR) dei topi femmina prima della gravidanza viene utilizzata per prevedere quali gravidanze si tradurranno in prole resiliente o prole con anomalie comportamentali e molecolari definite dopo l’esposizione a MIA. Qui, viene fornito un metodo dettagliato per indurre MIA tramite iniezione intraperitoneale (i.p.) del poli(I:C) mimica virale a doppio filamento (dsRNA) a 12,5 giorni di gestazione. Questo metodo induce una risposta infiammatoria acuta nella madre, che si traduce in perturbazioni nello sviluppo del cervello nei topi che mappano domini influenzati in modo simile nei disturbi psichiatrici e dello sviluppo neurologico umano (NDD).

Introduction

L’evidenza epidemiologica collega l’infezione materna ad un aumentato rischio di malattie psichiatriche e NDD, tra cui la schizofrenia (SZ) e il disturbo dello spettro autistico (ASD)1,2,3,4,5,6,7. Il modello murino MIA è stato sviluppato per testare la causalità e il ruolo meccanicistico del MIA nell’eziologia di questi disturbi, nonché per identificare biomarcatori molecolari esviluppare strumenti diagnostici e terapeutici 4,6. Nonostante l’utilità di questo modello e la sua crescente popolarità, vi è una notevole variabilità nei protocolli di induzione MIA all’interno del campo, rendendo difficile confrontare i risultati tra gli studi e replicare i risultati 8,9. Inoltre, la maggior parte delle iterazioni del modello non indaga due importanti aspetti traslazionali della MIA: (i) molti discendenti sono resilienti al MIA, e (ii) la prole suscettibile può mostrare combinazioni distinte di fenotipi8.

Per generare un modello MIA riproducibile, i ricercatori dovrebbero riportare almeno una misura quantitativa dell’entità del MIA indotto nelle dighe. Per indurre MIA durante la gestazione, il nostro laboratorio esegue iniezioni intraperitoneali (i.p.) del poliinositico mimica virale dell’RNA a doppio filamento: acido policitidilico [poli(I:C)]. Il poli(I:C) induce una cascata immunitaria simile ai virus influenzali in quanto riconosciuto dal recettore toll-like 3 (TLR3)10. Di conseguenza, il poli (I: C) attiva la risposta di fase acuta che si traduce in un rapido aumento delle citochine proinfiammatorie 8,11,12. Studi precedenti hanno dimostrato che l’elevazione delle citochine proinfiammatorie, inclusa l’interleuchina-6 (IL-6), è necessaria per produrre anomalie comportamentali e neuropatologia nella prole a seguito di MIA11,12,13. Pertanto, il livello di IL-6 nel siero materno raccolto durante il suo picco a 2,5 ore dopo l’iniezione di poli (I: C) è una misura quantitativa convincente di MIA che può essere utilizzata per confrontare i risultati tra i laboratori all’interno del campo.

Al fine di generare un modello MIA che affronti gli elementi traslazionalmente essenziali di resilienza e suscettibilità con un singolo protocollo di induzione 8,14, i ricercatori possono combinare approcci tipici di induzione con la caratterizzazione dell’immunoreattività basale (BIR) della madre prima della gravidanza8. Recentemente, è stato scoperto che topi C57BL / 6 femmine vergini mostrano una vasta gamma di risposte IL-6 a un’esposizione a basse dosi di poli (I: C) prima della gravidanza8. È solo un sottogruppo di queste femmine che continua a produrre prole suscettibile, e solo a certe grandezze di attivazione immunitaria come dettato dalla combinazione di BIR e poli (I: C) dose8. La MIA induce fenotipi in un pattern a U invertito; La prole mostra le maggiori aberrazioni comportamentali e molecolari quando le madri sono moderatamente immunoreattive e l’entità dell’infiammazione materna raggiunge, ma non supera, un intervallo critico8. Qui, viene fornito un metodo dettagliato su come creare in modo affidabile sia la prole resiliente che suscettibile con fenotipi comportamentali divergenti a seguito dell’iniezione gestazionale di poli (I: C).

Protocol

Tutti i protocolli sono eseguiti sotto l’approvazione dell’Università della California-Davis Institutional Animal Care and Use Committee (IACUC). 1. Preparazione degli animali Quando si acquisiscono animali, mantenere coerenti i seguenti parametri per garantire la massima riproducibilità.Fornitore e posizione del fornitore: come riportato in precedenza, i topi selvatici C57BL / 6J mostrano risposte diverse alla stessa dose di poli (I: C) a seconda del forni…

Representative Results

Non tutti gli animali esposti a 30 mg/kg di poli (I:C) a E12.5 producono prole con anomalie comportamentali costanti 8,31. Sebbene sia 30 mg / kg che 40 mg / kg di poli (I: C) producano in modo affidabile comportamenti di malattia nelle dighe, tra cui diminuzione dei livelli di attività, risposte ipotermiche e perdita di peso, e causino anche aumenti significativi di IL-6, solo un sottogruppo di cucciolate esposte a MIA continuerà a sviluppare anomalie comporta…

Discussion

L’infezione materna altera il corso dello sviluppo cerebrale nell’uomo e sia nei roditori che nei primati non umani 4,5,7. Qui, viene delineata una procedura per indurre MIA nei topi a metà gestazione usando poli (I: C). Questo metodo incorpora la valutazione del BIR prima della gravidanza, che aumenta la riproducibilità e offre la possibilità di studiare meccanicamente i meccanismi che portano alla resilienza e alla suscetti…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Ringraziamo la dott.ssa Myka Estes per la sua persistenza nell’affrontare la variabilità nel modello MIA murino e tutti i contributori in Estes et al.8 per il loro lavoro che ha portato allo sviluppo del protocollo dei metodi qui descritti. La ricerca qui riportata è stata supportata da NIMH 2P50 MH106438-06 (A.K.M.) e NIMH T32MH112507 (K.P.).

Materials

0.9% NaCl physiological endotoxin free saline Sigma-Aldrich 7647-14-5 Control and vehicle for Poly(I:C)
35mm petri dish Thomas Scientific 1219Z45 Used to hold oil during tail bleed
7.5% TGX gels Bio-rad 4561084 Optional
Ancare Nestlets Fisher Scientific NC9365966 Optional
anti-β-tubulin Millipore MAB3408 Optional
Bio-Plex Pro Mouse Cytokine Standards Group I Bio-rad 171I50001
Bio-Plex Pro Reagent Kit with Flat Plate Bio-rad 171304070M
Bovine Serum Albumin ThermoFisher 23209 Optional
Centrifuge Eppendorf 5810R Optional
Covidien Monoject 1/2 mL Insulin Syringe with 28G x 1/2 in. Needle Spectrum 552-58457-083
Dithiothreitol Sigma-Aldrich D9779-10G Optional
Environmental enrichment Bio-serv K3327 and K3322 Optional
Ethovision Noldus Ethovision Optional
Fluorsecent-tagged seondary ntibodies Li-cor 925-32213 and 925-68072 Optional
Food-grade edible oil (like olive, canola or grapeseed) Various vendors Use to lubricate tail during tail bleeds
HBSS ThermoFisher 14060040 Optional
High molecular weight polyinositic:polycytidilic acid Invivogen #tlrl-pic-5 Used to establish females' BIR
Humane Mouse Restrainer AIMS 1000 Used to restrain mouse during tail bleeds
Image Studio Software Licor 5.2 Optional
Laemmli buffer Bio-rad 1610737EDU Optional
Luminex200 ThermoFisher APX10031
Microvette CB300 300μl Serum capillary tube Sarstedt 16.440.100
Mixed molecular weight polyinositic:polycytidilic acid Sigma-Aldrich #P0913 Gestational induction of MIA
monoclonal anti-MEF2A AbCam ab76063 Optional
monoclonal anti-STAT3 Cell signaling 12640S Optional
Observer Noldus Observer Optional
Odyssey blocking buffer (TBS) Li-cor 927-50003 Optional
Odyssey CLx imaging system Li-cor 9140 Optional
Omnipure PBS Millipore 65054L Optional
Pierce BCA Protein Assay Kit ThermoFisher 23227 Optional
polyclonal anti_TH Pel-Freez P4101-150 Optional
PVDF membrane Bio-rad 162-0177 Optional
Qsonica Sonicator Q500 Fisher Scientific 15-338-282 Optional
Quick blood stopper Petco 17140
Seal-Rite 1.5 ml microcentrifuge tube, natural non-sterile USA Scientific 1615-5500
Soldering stand Amazon B08Y12QC73 Used to hold capillary tube during tail bleeds
Sunflower seeds Bio-serv S5137-1 Use to increase breeding efficiency
The Bio-Plex Pro Mouse IL-6 set, Bio-rad 171G5007M
Tris base Fisher Scientific BP152-1 Optional
Tween 20 Bio-rad 23209 Optional

References

  1. Adams, W., Kendell, R. E., Hare, E. H., Munk-Jørgensen, P. Epidemiological evidence that maternal influenza contributes to the aetiology of schizophrenia. An analysis of Scottish, English, and Danish data. The British Journal of Psychiatry: The Journal of Mental Science. 163 (4), 522-534 (1993).
  2. Brown, A. S., et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Archives of General Psychiatry. 61 (8), 774-780 (2004).
  3. Brown, A. S., Derkits, E. J. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. The American Journal of Psychiatry. 167 (3), 261-280 (2010).
  4. Patterson, P. H. Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behavioural Brain Research. 204 (2), 313-321 (2009).
  5. Patterson, P. H. Maternal infection and immune involvement in autism. Trends in Molecular Medicine. 17 (7), 389-394 (2011).
  6. Estes, M. L., McAllister, A. K. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nature Reviews. Neuroscience. 16 (8), 469-486 (2015).
  7. Estes, M. L., McAllister, A. K. Maternal immune activation: Implications for neuropsychiatric disorders. Science. 353 (6301), 772-777 (2016).
  8. Estes, M. L., et al. Baseline immunoreactivity before pregnancy and poly(I:C) dose combine to dictate susceptibility and resilience of offspring to maternal immune activation. Brain, Behavior and Immunity. 88, 619-630 (2020).
  9. Kentner, A. C., et al. Maternal immune activation: reporting guidelines to improve the rigor, reproducibility, and transparency of the model. Neuropsychopharmacology. 44 (2), 245-258 (2019).
  10. Zhou, Y., et al. TLR3 activation efficiency by high or low molecular mass poly I:C. Innate Immunity. 19 (2), 184-192 (2013).
  11. Hsiao, E. Y., Patterson, P. H. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain, Behavior and Immunity. 25 (4), 604-615 (2011).
  12. Smith, S. E., Li, J., Garbett, K., Mirnics, K., Patterson, P. H. Maternal immune activation alters fetal brain development through interleukin-6. The Journal of Neuroscience. 27 (40), 10695-10702 (2007).
  13. Choi, G. B., et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 351 (6276), 933-939 (2016).
  14. Meyer, U. Neurodevelopmental resilience and susceptibility to maternal immune activation. Trends in Neurosciences. 42 (11), 793-806 (2019).
  15. Laroche, J., Gasbarro, L., Herman, J. P., Blaustein, J. D. Reduced behavioral response to gonadal hormones in mice shipped during the peripubertal/adolescent period. Endocrinology. 150 (5), 2351-2358 (2009).
  16. Aguila, H. N., Pakes, S. P., Lai, W. C., Lu, Y. S. The effect of transportation stress on splenic natural killer cell activity in C57BL/6J mice. Laboratory Animal Science. 38 (2), 148-151 (1988).
  17. Landi, M. S., Kreider, J. W., Lang, C. M., Bullock, L. P. Effects of shipping on the immune function in mice. American Journal of Veterinary Research. 43 (9), 1654-1657 (1982).
  18. Menees, K. B., et al. Sex- and age-dependent alterations of splenic immune cell profile and NK cell phenotypes and function in C57BL/6J mice. Immunity & Ageing. 18 (1), 3 (2021).
  19. Shaw, A. C., Goldstein, D. R., Montgomery, R. R. Age-dependent dysregulation of innate immunity. Nature Reviews Immunology. 13 (12), 875-887 (2013).
  20. Starr, M. E., Saito, M., Evers, B. M., Saito, H. Age-associated increase in Cytokine production during systemic inflammation-II: the role of IL-1beta in age-dependent IL-6 upregulation in adipose tissue. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 70 (12), 1508-1515 (2015).
  21. Bruce, M., et al. Acute peripheral immune activation alters cytokine expression and glial activation in the early postnatal rat brain. Journal of Neuroinflammation. 16 (1), 200 (2019).
  22. Mader, S. L., Libal, N. L., Pritchett-Corning, K., Yang, R., Murphy, S. J. Refining timed pregnancies in two strains of genetically engineered mice. Lab Animal. 38 (9), 305-310 (2009).
  23. Heyne, G. W., et al. A simple and reliable method for early pregnancy detection in inbred mice. Journal of the American Association for Laboratory Animal Science. 54 (4), 368-371 (2015).
  24. Hutchinson, E., Avery, A., VandeWoude, S. Environmental enrichment for laboratory rodents. ILAR Journal. 46 (2), 148-161 (2005).
  25. Bayne, K. Environmental enrichment and mouse models: Current perspectives. Animal Models and Experimental Medicine. 1 (2), 82-90 (2018).
  26. Toth, L. A., Kregel, K., Leon, L., Musch, T. I. Environmental enrichment of laboratory rodents: the answer depends on the question. Comparative Medicine. 61 (4), 314-321 (2011).
  27. Sparling, J. E., Barbeau, K., Boileau, K., Konkle, A. T. M. Environmental enrichment and its influence on rodent offspring and maternal behaviours, a scoping style review of indices of depression and anxiety. Pharmacology Biochemistry and Behavior. 197, 172997 (2020).
  28. Xiao, R., Ali, S., Caligiuri, M. A., Cao, L. Enhancing effects of environmental enrichment on the functions of natural killer cells in mice. Frontiers in Immunology. 12, 695859 (2021).
  29. Girbovan, C., Plamondon, H. Environmental enrichment in female rodents: considerations in the effects on behavior and biochemical markers. Behavioural Brain Research. 253, 178-190 (2013).
  30. Mueller, F. S., Polesel, M., Richetto, J., Meyer, U., Weber-Stadlbauer, U. Mouse models of maternal immune activation: Mind your caging system. Brain, Behavior, and Immunity. 73, 643-660 (2018).
  31. Mueller, F. S., et al. neuroanatomical, and molecular correlates of resilience and susceptibility to maternal immune activation. Molecular Psychiatry. 26 (2), 396-410 (2021).
  32. Nyffeler, M., Meyer, U., Yee, B. K., Feldon, J., Knuesel, I. Maternal immune activation during pregnancy increases limbic GABAA receptor immunoreactivity in the adult offspring: implications for schizophrenia. Neuroscience. 143 (1), 51-62 (2006).
  33. Babri, S., Doosti, M. H., Salari, A. A. Strain-dependent effects of prenatal maternal immune activation on anxiety- and depression-like behaviors in offspring. Brain, Behavior, and Immunity. 37, 164-176 (2014).
  34. Vigli, D., et al. Maternal immune activation in mice only partially recapitulates the autism spectrum disorders symptomatology. Neuroscience. 445, 109-119 (2020).
  35. Malkova, N. V., Yu, C. Z., Hsiao, E. Y., Moore, M. J., Patterson, P. H. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain, Behavior, and Immunity. 26 (4), 607-616 (2012).
  36. Shin Yim, Y., et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature. 549 (7673), 482-487 (2017).
  37. Ito, H. T., Smith, S. E., Hsiao, E., Patterson, P. H. Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring. Brain, Behavior, and Immunity. 24 (6), 930-941 (2010).
  38. Zuckerman, L., Weiner, I. Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. Journal of Psychiatric Research. 39 (3), 311-323 (2005).
  39. Mueller, F. S., Polesel, M., Richetto, J., Meyer, U., Weber-Stadlbauer, U. Mouse models of maternal immune activation: Mind your caging system. Brain, Behavior, and Immunity. 73, 643-660 (2018).
  40. Careaga, M., Murai, T., Bauman, M. D. Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates. Biological Psychiatry. 81 (5), 391-401 (2017).
  41. Lazic, S. E., Essioux, L. Improving basic and translational science by accounting for litter-to-litter variation in animal models. BMC Neuroscience. 14, 37 (2013).
  42. Spencer, S. J., Meyer, U. Perinatal programming by inflammation. Brain, Behavior, and Immunity. 63, 1-7 (2017).
  43. Mouihate, A., Kalakh, S. Maternal Interleukin-6 hampers hippocampal neurogenesis in adult rat offspring in a sex-dependent manner. Developmental Neuroscience. 43 (2), 106-115 (2021).
  44. Zhang, Z., van Praag, H. Maternal immune activation differentially impacts mature and adult-born hippocampal neurons in male mice. Brain, Behavior, and Immunity. 45, 60-70 (2015).

Play Video

Cite This Article
Prendergast, K., McAllister, A. K. Generating a Reproducible Model of Mid-Gestational Maternal Immune Activation using Poly(I:C) to Study Susceptibility and Resilience in Offspring. J. Vis. Exp. (186), e64095, doi:10.3791/64095 (2022).

View Video