Dieses Protokoll beschreibt detailliert die Herstellung von Nukleosomalkomplexen unter Verwendung von zwei Methoden der Probenvorbereitung zum Einfrieren von TEM-Gittern.
Die DNA-Reparatur im Zusammenhang mit Chromatin ist kaum verstanden. Biochemische Studien mit Nukleosomenkernpartikeln, der grundlegenden Wiederholungseinheit des Chromatins, zeigen, dass die meisten DNA-Reparaturenzyme DNA-Schäden im Vergleich zu freier DNA mit reduzierten Raten entfernen. Die molekularen Details darüber, wie Basen-Exzisionsreparatur-Enzyme (BER) DNA-Schäden in Nukleosomen erkennen und entfernen, wurden nicht aufgeklärt. Biochemische BER-Daten von nukleosomalen Substraten deuten jedoch darauf hin, dass das Nukleosom je nach Ort der DNA-Läsion und des Enzyms unterschiedliche strukturelle Barrieren aufweist. Dies deutet darauf hin, dass die Mechanismen, die von diesen Enzymen verwendet werden, um DNA-Schäden in freier DNA zu entfernen, sich von denen unterscheiden können, die in Nukleosomen verwendet werden. Angesichts der Tatsache, dass der Großteil der genomischen DNA zu Nukleosomen zusammengesetzt ist, werden strukturelle Informationen dieser Komplexe benötigt. Bis heute fehlen der wissenschaftlichen Gemeinschaft detaillierte Protokolle, um technisch machbare Strukturstudien dieser Komplexe durchzuführen. Hier stellen wir zwei Methoden zur Verfügung, um einen Komplex aus zwei genetisch fusionierten BER-Enzymen (Polymerase β und AP Endonuclease1) herzustellen, die an eine Einzelnukleotidlücke in der Nähe des Eintritts-Austritts des Nukleosoms gebunden sind, um die Strukturbestimmung der Kryo-Elektronenmikroskopie (Kryo-EM) zu ermöglichen. Beide Methoden der Probenvorbereitung sind für die Verglasung von Qualitätsgittern durch Tauchgefrieren geeignet. Dieses Protokoll kann als Ausgangspunkt für die Herstellung anderer nukleosomaler Komplexe mit verschiedenen BER-Faktoren, Pionier-Transkriptionsfaktoren und Chromatin-modifizierenden Enzymen verwendet werden.
Eukaryotische DNA wird durch Histonproteine organisiert und verdichtet, wobei Chromatin gebildet wird. Das Nukleosomenkernpartikel (NCP) stellt die grundlegende Wiederholungseinheit des Chromatins dar, die den Zugang zu DNA-bindenden Proteinen für die DNA-Reparatur, -Transkription und -Replikation reguliert1. Obwohl die erste Röntgenkristallstruktur des NCP erstmals vor mehr als zwei Jahrzehnten aufgeklärt wurde2 und viele weitere Strukturen des NCP seit 3,4,5,6 veröffentlicht wurden, sind DNA-Reparaturmechanismen in nukleosomalen Substraten noch nicht beschrieben. Die Aufdeckung der molekularen Details, die der DNA-Reparatur im Chromatin zugrunde liegen, erfordert eine strukturelle Charakterisierung der beteiligten Komponenten, um zu verstehen, wie lokale strukturelle Merkmale des NCP die DNA-Reparaturaktivitäten regulieren. Dies ist besonders wichtig im Zusammenhang mit der Basenexzisionsreparatur (BER), da biochemische Studien mit BER-Enzymen auf einzigartige DNA-Reparaturmechanismen in Nukleosomen hindeuten, die von enzymspezifischen strukturellen Anforderungen für die Katalyse und der strukturellen Position der DNA-Läsion innerhalb des Nukleosomsabhängen 7,8,9,10,11,12,13 . Da es sich bei der BER um einen lebenswichtigen DNA-Reparaturprozess handelt, besteht ein erhebliches Interesse, diese Lücken zu schließen und gleichzeitig einen Ausgangspunkt zu schaffen, von dem aus andere technisch realisierbare Strukturstudien mit relevanten nukleosomalen Komplexen durchgeführt werden können.
Die Kryo-EM entwickelt sich schnell zur Methode der Wahl, um die dreidimensionale (3D) Struktur von Komplexen zu lösen, deren großflächige Vorbereitung einer homogenen Probe eine Herausforderung darstellt. Obwohl das Design und die Aufreinigung von NCPs, die mit einem DNA-Reparaturfaktor (NCP-DRF) komplexiert sind, wahrscheinlich eine maßgeschneiderte Optimierung erfordern wird, liefert das hier vorgestellte Verfahren zur Erzeugung und zum Einfrieren eines stabilen NCP-DRF-Komplexes Details zur Optimierung der Proben- und Kryo-EM-Gittervorbereitung. Zwei (sich nicht gegenseitig ausschließende) Workflows, die in Abbildung 1 dargestellt sind, und die spezifischen Details im Protokoll identifizieren kritische Schritte und bieten Strategien zur Optimierung dieser Schritte. Diese Arbeit wird das Chromatin- und DNA-Reparaturfeld in eine Richtung treiben, in der die Ergänzung biochemischer mit strukturellen Studien technisch möglich wird, um die molekularen Mechanismen der nukleosomalen DNA-Reparatur besser zu verstehen.
Ein spezifisches Protokoll zur Reinigung des DNA-Reparaturfaktors hängt von dem interessierenden Enzym ab. Es gibt jedoch einige allgemeine Empfehlungen, einschließlich der Verwendung rekombinanter Methoden zur Proteinexpression und -reinigung18; Wenn das interessierende Protein zu klein ist (<50 kDa), war die Strukturbestimmung durch Kryo-EM bis vor kurzem durch den Einsatz von Fusionssystemen19, Nanokörper-bindenden Gerüsten20 und der Optimieru…
The authors have nothing to disclose.
Wir danken Dr. Mario Borgnia vom Kryo-EM-Kern am National Institute of Environmental Health Sciences und Dr. Joshua Strauss von der University of North Carolina in Chapel Hill für ihr Mentoring und ihre Ausbildung in der Kryo-EM-Netzvorbereitung. Wir danken auch Dr. Juliana Mello Da Fonseca Rezende für die technische Unterstützung in der Anfangsphase dieses Projekts. Wir schätzen den wichtigen Beitrag und die Unterstützung des verstorbenen Dr. Samuel H. Wilson und seiner Labormitglieder, insbesondere Dr. Rajendra Prasad und Dr. Joonas Jamsen, für die Reinigung des genetisch fusionierten APE1-Polβ-Komplexes. Die Forschung wurde durch das Intramurale Forschungsprogramm der National Institutes of Health, National Institute of Environmental Health Sciences [Förderkennzeichen Z01ES050158, Z01ES050159 und K99ES031662-01] unterstützt.
1 M HEPES; pH 7.5 | Thermo Fisher Scientific | 15630080 | |
1 M MgCl2 | Thermo Fisher Scientific | AM9530G | |
10x TBE | Bio-rad | 1610733 | |
25% glutaraldehyde | Fisher Scientific | 50-262-23 | |
3 M KCl | Thermo Fisher Scientific | 043398.K2 | |
491 prep cell | Bio-rad | 1702926 | |
Amicon Ultra 15 centrifugal filter (MW cutoff 30 kDa) | Millipore Sigma | Z717185 | |
Amicon Ultra 4 centrifugal filter (MW cutoff 30 kDa) | Millipore Sigma | UFC8030 | |
AutoGrid Tweezers | Ted Pella | 47000-600 | |
Automatic Plunge Freezer | Leica | Leica EM GP | |
C-1000 touch thermocycler | Bio-rad | 1851148 | |
C-clips and rings | Thermo Fisher | 6640–6640 | |
Clipping station | SubAngostrom | SCT08 | |
Dialysis Membrane (MW cufoff 6-8 kDa) | Fisher Scientific | 15370752 | |
Diamond Tweezers | Techni-Pro | 758TW0010 | |
dsDNA | Integrated DNA techonologies | N/A | |
FEI Titan Krios | Thermo Fisher | KRIOSG4TEM | |
FPLC purification system | AKTA Pure | 29018224 | |
Fraction collector Model 2110 | Bio-rad | 7318122 | |
Glow Discharge Cleaning System | Ted Pella | 91000S | |
Grid Boxes | SubAngostrom | PB-E | |
Grid Storage Accessory Pack | SubAngostrom | GSAX | |
Liquid Ethane | N/A | N/A | |
Liquid Nitrogen | N/A | N/A | |
Minipuls 3 peristaltic two-head pump | Gilson | F155008 | |
Nanodrop | Thermo Fisher Scientific | ND-2000 | |
Novex 16%, Tricine, 1.0 mm, Mini Protein Gels | Thermo Fisher Scientific | EC6695BOX | |
Pipetman | Gilson | FA10002M | |
Pipette tips (VWR) Low Retention | VWR | 76322-528 | |
Polyacrylamide gel solution (37.5:1) | Bio-rad | 1610158 | |
polyethylene glycol (PEG) | Millipore Sigma | P4338-500G | |
Pur-A-lyzer Maxi 3500 | Millipore Sigma | PURX35050 | |
Purified recombinant DNA repair factor | N/A | N/A | |
R 1.2/1.3 Cu 300 mesh Grids | Quantifoil | N1-C14nCu30-01 | |
Recombinant histone octamer | N/A | N/A | |
Spring clipping tools | SubAngostrom | CSA-01 | |
Superdex 200 column 10/300 | Millipore Sigma | GE28-9909-44 | |
Transmission Electron Microscope | Thermo Fisher | Talos Arctica 200 kV | |
Tweezers Assembly for FEI Vitrobot Mark IV-I | Ted Pella | 47000-500 | |
UltraPure Glycerol | Thermo Fisher Scientific | 15514011 | |
Vitrobot | Thermo Fisher | Mark IV System | |
Whatman Filter paper (55 mM) | Cytiva | 1005-055 | |
Xylene cyanol | Thermo Fisher Scientific | 440700500 | |
Zeba Micro Spin Desalting Columns, 7K MWCO, 75 µL | Thermo Fisher Scientific | 89877 |