Здесь мы представляем протокол для значительного снижения числа копий митохондриальной ДНК в яйцеклетке крупного рогатого скота (P < 0,0001). Этот метод использует центрифугирование и бисекцию для существенного уменьшения митохондрий ооцитов и может обеспечить повышенную вероятность развития у реконструированных эмбрионов межвидового переноса ядер соматических клеток.
Межвидовой перенос ядра соматических клеток (iSCNT) может быть использован для спасения исчезающих видов, но в реконструированном эмбрионе существуют две различные популяции митохондриальной ДНК (мтДНК): одна в ооплазме-реципиенте и одна в донорской соматической клетке. Эта митохондриальная гетероплазма может привести к проблемам развития у эмбриона и плода. Протоколы клонирования ручной работы включают бисекцию ооцитов, которая может быть использована для уменьшения числа копий мтДНК, снижения степени митохондриальной гетероплазмы у реконструированного эмбриона. Центрифугирование обнаженных, зрелых бычьих ооцитов произвело видимую митохондриально-плотную фракцию на одном полюсе ооцита. Zonae pellucidae ооцитов удаляли воздействием проназного раствора. Бисекцию проводили с использованием микробелка для удаления видимой фракции митохондрий. qPCR использовался для количественной оценки мтДНК, присутствующей в образцах ДНК, извлеченных из цельных ооцитов и бисекционных оопластов, обеспечивая сравнение числа копий мтДНК до и после бисекции. Числа копий были рассчитаны с использованием пороговых значений цикла, формулы линии регрессии стандартной кривой и соотношения, которое включало соответствующие размеры продуктов ПЦР мтДНК и геномных продуктов ПЦР. Один бычий яйцеклет имел среднее число копий мтДНК (± стандартное отклонение) 137 904 ± 94 768 (n = 38). Один истощенный митохондриями оопласт имел среднее число копий мтДНК 8 442 ± 13 806 (n = 33). Средние копии мтДНК, присутствующие в богатом митохондриями оопласте, составили 79 390 ± 58 526 копиями мтДНК (n = 28). Различия между этими рассчитанными средними показателями указывают на то, что центрифугирование и последующая бисекция могут значительно уменьшить количество копий мтДНК, присутствующих в истощенном митохондриями оопласте, по сравнению с исходным ооцитом (P < 0,0001, определяемого односторонним ANOVA). Снижение мтДНК должно снизить степень митохондриальной гетероплазмы у реконструированного эмбриона, возможно, способствуя стандартному эмбриональному и фетальному развитию. Добавление митохондриального экстракта из соматической донорской клетки также может иметь важное значение для достижения успешного эмбрионального развития.
Перенос ядра соматических клеток (SCNT) включает слияние энуклеированного ооцита одного животного и соматической клетки животного одного вида. В большинстве случаев ооциты и соматические клетки происходят от одного и того же вида, а показатели рождаемости ниже 6%1. Некоторые исследования включают использование межвидового SCNT (iSCNT), который включает в себя слияние соматической клетки и ооцита, которые происходят от двух разных видов. В этих исследованиях уровень рождаемости даже ниже, чем в SCNT – обычно менее 1%1. Тем не менее, iSCNT имеет возможность использоваться в качестве метода спасения исчезающих видов, поскольку соматические клетки этих животных более доступны, чем их половые клетки1. Реципиентные ооциты, используемые в iSCNT, часто являются домашними или распространенными лабораторными видами, такими как коровы, свиньи и мыши. Некоторые попытки, предпринятые до сих пор, успешно произвели живого молодняка, хотя полученное потомство было внутриродовыми животными (виды ооцитов-реципиентов и донорских клеток были членами одного рода)2,3,4. Межродовые модели (в которых используются ооциты и соматические клетки животных разных родов) еще не произвели живых животных, и большинство реконструированных эмбрионов останавливаются на 8-16 клеточной стадии развития in vitro 5,6,7,8. Одним из возможных объяснений этой остановки эмбрионального развития является возникновение митохондриальной гетероплазмы в эмбрионах – наличие более одного типа ДНК митохондрий (мтДНК) в одной клетке. Гетероплазма может привести к таким проблемам, как неэффективность развития или неудача у эмбриона или у живого животного1. Патогенез также может произойти позже в жизни животного9. Хотя эта проблема также присутствует у потомства SCNT, межвидовой компонент в эмбрионах iSCNT усугубляет проблему.
Когда эмбриональная мтДНК поступает из двух разных видов, митохондрии реципиентов ооцитов, которые представляют большинство, не работают эффективно или результативно с ядром донорской клетки 1,10. Большие таксономические разрывы между двумя видами, используемыми в iSCNT, вероятно, усиливают эту проблему; внутриродовое живое потомство (потомство Bos gaurus и Bos indicus с использованием ооцитов Bos taurus), а также потомство, полученное с помощью традиционного SCNT (например, потомство Ovis aries с использованием ооцитов Ovis) были химерами (мтДНК от двух особей присутствовала у этих животных 11,12,13). Тем не менее, они развивались намного дальше, чем межродовые эмбрионы SCNT14,15. Обмен информацией между митохондриями ооцитов и ядром донорской клетки может быть более успешным во внутриродовом эмбрионе, чем в межродовом эмбрионе16.
Количество мтДНК в зрелом бычьем ооците примерно в 100 раз больше, чем количество, обнаруженное в одной соматической клетке12. Снижение этого соотношения может стимулировать размножение митохондрий соматических клеток внутри реконструированного эмбриона, что позволяет увеличить популяцию продуктивных митохондрий16. Это, в свою очередь, может обеспечить больше энергии для удовлетворения потребностей развивающегося эмбриона15. Предыдущие попытки уменьшить число копий мтДНК ооцита или эмбриона включают химическое применение, микроманипуляцию и дополнение ооцита или эмбриона дополнительными митохондриями из донорских клеток 16,17,18,19,20. Однако химическое применение (например, 2′,3′-дидеоксицитидин) не идеально подходит для эмбрионального развития и снижает число копий мтДНК ооцитов примерно наполовину18. Предыдущее снижение мтДНК ооцитов путем микроманипуляции удаляло в среднем 64% мтДНК17 ооцита. Хотя добавление митохондрий донорских клеток может быть жизнеспособным вариантом, его использование еще не произвело живого межродового животного в исследованиях iSCNT21.
Применение бисекции для уменьшения числа копий мтДНК ооцитов еще не использовалось в опубликованных исследованиях. Бисектирование ооцитов с целью слияния оопластов с соматической клеткой является предпосылкой ручного клонирования (HMC), которое обычно использует бисекцию в качестве метода удаления полярного тела и метафазной пластины из метафазного II (MII) ооцита. HMC успешно произвел потомство у нескольких видов, включая коз, крупный рогатый скот, свиней, овец и лошадей 22,23,24,25,26, но обычно не включает стадию центрифугирования до бисекции. Интеграция высокоскоростного центрифугирования ооцита позволяет выделить митохондрии (и, следовательно, мтДНК) на одном полюсе ооцита, который затем может быть разделен пополам с помощью микробелла для удаления этих митохондриально-плотных фракций. Два истощенных митохондриями оопласта затем могут быть слиты с соматической клеткой, как в случае с HMC, чтобы сформировать реконструированный эмбрион, который содержит значительно меньше мтДНК из видов ооцитов.
Вопрос, на который мы пытаемся ответить с помощью этого протокола, заключается в том, как уменьшить мтДНК в бычьем ооците, чтобы произвести жизнеспособный реконструированный эмбрион, который содержит меньше гетероплазматической мтДНК. В этом протоколе ооциты центрифугировали и делили пополам. Количество копий мтДНК ooplast и интактных ооцитов было рассчитано для определения эффективности этого метода в снижении числа копий мтДНК мтДНК крупного рогатого скота.
Методы, ранее использовавшиеся для снижения количества копий мтДНК в ооцитах, имеют свои недостатки. Удаление митохондрий из ооцитов на основе микроманипуляции снижает число копий мтДНК в среднем на 64%27. Уникальный метод, ранее использовавшийся для энуклеации, предполага?…
The authors have nothing to disclose.
Авторы хотели бы поблагодарить своих коллег из Университета штата Юта, исследователей репродуктивных наук в зоопарке Сан-Диего и доктора Ребекку Кришер из Genus PLC.
1.5 mL centrifuge tubes | Fisher Scientific | 5408129 | |
60 mm dish | Sigma-Aldrich | D8054 | |
Centrifuge | Eppendorf | 5424 | |
Cytochalasin B | Sigma-Aldrich | C6762 | |
Fetal Bovine Serum | Sigma-Aldrich | F2442 | |
M199 Media | Sigma-Aldrich | M4530 | |
Mineral Oil | Sigma-Aldrich | M8410 | |
Mini Centrifuge | SCILOGEX | D1008 | |
mtDNA Primer: Forward (12S) | GGGCTACATTCTCTACACCAAG | ||
mtDNA Primer: Reverse (12S) | GTGCTTCATGGCCTAATTCAAC | ||
NanoDrop Spectrophotometer | Thermo Scientific | ND2000 | |
Opthalmic Scalpel with Aluminum Handle | PFM Medical | 207300633 | Microblade for bisection |
Protease/pronase | Sigma-Aldrich | P5147 | |
QIAamp DNA Micro Kit | Qiagen | 56304 | |
QuantStudio™ 3 – 96-Well 0.2-mL | ThermoFisher | A28567 | |
Search plate | Fisher Scientific | FB0875711A | |
SYBR Green qPCR Master Mix | ThermoFisher | K0221 | qPCR master mix |
Synthetic Oviductal Fluid with HEPES (HSOF) | |||
ThermoPlate | Tokai Hit | TPi-SMZSSX | Heating stage |