Las bisaziridinas contiguas que contenían aziridinas no activadas y activadas se sintetizaron mediante aziridinaciones organocatalíticas asimétricas y luego se sometieron a reacciones quimioselectivas de apertura de anillo en condiciones ácidas o básicas. El anillo de aziridina no activado se abre con nucleófilos menos reactivos en condiciones ácidas, mientras que el anillo de aziridina activada se abre con nucleófilos más reactivos en condiciones básicas.
Las aziridinas, una clase de moléculas orgánicas reactivas que contienen un anillo de tres miembros, son sintones importantes para la síntesis de una gran variedad de compuestos diana funcionalizados que contienen nitrógeno a través de la apertura de anillo regiocontrolada de aziridinas sustituidas por C. A pesar del tremendo progreso en la síntesis de aziridina durante la última década, el acceso eficiente a las bisaziridinas contiguas sigue siendo difícil. Por lo tanto, estábamos interesados en sintetizar bisaziridinas contiguas que llevan un conjunto electrónicamente diverso de N-sustituyentes más allá de la columna vertebral única de aziridina para reacciones regioselectivas de apertura de anillo con diversos nucleófilos. En este estudio, las bisaziridinas contiguas quirales se prepararon mediante aziridinación asimétrica organocatalítica de (E)-3-((S)-1-((R)-1-feniletil)aziridina-2-il)acrilaldehído quiral con N-Ts-O-tosil o N-Boc-O-tosil hidroxilamina como fuente de nitrógeno en presencia de (2S)-[difenil(trimetilsililoxi)metil]pirrolidina como organocatalizador quiral. También se demuestran aquí ejemplos representativos de reacciones regioselectivas de apertura de anillos contiguas de bisaziridinas con una variedad de nucleófilos como azufre, nitrógeno, carbono y oxígeno, y la aplicación de bisaziridinas contiguas a la síntesis de pirrolidinas quirales multisustituidas por hidrogenación catalizada por Pd.
El diseño racional de pequeñas moléculas orgánicas con diversos sitios reactivos que controlan con precisión la selectividad del producto es un objetivo clave en la síntesis orgánica moderna y la química verde 1,2,3,4,5,6,7,8. Para lograr este objetivo, nos interesaba la síntesis modular de aziridinas. Las aziridinas son de interés para la mayoría de los químicos orgánicos, debido a su marco estructuralmente importante9 con un conjunto electrónicamente diverso de N-sustituyentes que pueden conducir a reacciones regioselectivas de apertura de anillo con múltiples nucleófilos 10,11,12,13,14,15,16,17,18, 19, y variadas actividades farmacológicas como propiedades antitumorales, antimicrobianas y antibacterianas. A pesar de los avances en la química de la aziridina, la aziridina no activada y la aziridina activada tienen síntesis independientes y reacciones de apertura de anillo en la literatura20.
Por lo tanto, nuestro objetivo fue sintetizar bisaziridinas contiguas que comprenden tanto las aziridinas no activadas como las activadas. Estas bisaziridinas contiguas se pueden utilizar para racionalizar sistemáticamente un patrón quimioselectivo de apertura de anillo basado en las siguientes propiedades electrónicas de las dos aziridinas diferentes y su reactividad a nucleófilos 20,21,22,23,24: a) aziridinas activadas, en las que los sustituyentes que retiran electrones estabilizan conjugativamente la carga negativa sobre el nitrógeno, reaccionan fácilmente con múltiples nucleófilos a permitir productos abiertos con anillo; b) las aziridinas no activadas, en las que el nitrógeno se une a los sustituyentes donantes de electrones, son considerablemente inertes hacia los nucleófilos; por lo tanto, se requiere un paso de preactivación con un activador adecuado (principalmente ácidos de Brønsted o Lewis) para permitir los productos abiertos en anillo en altos rendimientos20,21,25,26.
El presente estudio describe el diseño racional de bisaziridinas contiguas como bloques de construcción quirales a través de la organocatálisis libre de metales de transición y la síntesis de diversas moléculas ricas en nitrógeno utilizando herramientas de modelado predictivo para reacciones de apertura de anillo de bisaziridinas. Este estudio tiene como objetivo estimular el avance de métodos prácticos para la construcción de compuestos bioactivos enriquecidos con nitrógeno y productos naturales y la polimerización de aziridinas.
La formación de una mezcla inseparable de diastereómeros se ha observado ocasionalmente durante el curso de la aziridinación organocatalítica de 3-[1-(1-feniletil)aziridina-2-il)]acrilaldehído quiral, cuando se utilizó N-Boc-O-tosil o N-Ts-O-tosil hidroxilamina como fuente de nitrógeno. Además, el rendimiento del producto de bisaziridina contigua disminuyó cuando la cantidad de dialilo silil éter prolinol como catalizador se incrementó de 7 mol% a 20 mol%47…
The authors have nothing to disclose.
Esta investigación fue apoyada por la subvención del Instituto de Ciencias Básicas de Corea (Centro Nacional de Instalaciones y Equipos de Investigación) financiada por el Ministerio de Educación (2022R1A6C101A751). Este trabajo también fue apoyado por las subvenciones de la Fundación Nacional de Investigación de Corea (NRF) (2020R1A2C1007102 y 2021R1A5A6002803).
(R)-(+)-α,α-Diphenyl-2-pyrrolidinemethanol trimethylsilyl ether | Sigma-Aldrich | 677191 | reagent |
(R)-1-((R)-1-phenylethyl)aziridine-2-carbaldehyde | Imagene Co.,Ltd. | reagent | |
(S)-(–)-α,α-Diphenyl-2-pyrrolidinemethanol trimethylsilyl ether | Sigma-Aldrich | 677183 | reagent |
(S)-2-(diphenyl((trim ethylsilyl)oxy)methyl)pyrrolidine | Sigma-Aldrich | 677183 | reagent |
(Triphenylphosphoranylidene) acetaldehyde | Sigma-Aldrich | 280933 | reagent |
1,2-Dichloroethane | Sigma-Aldrich | 284505 | solvent |
AB Sciex 4800 Plus MALDI TOFTM (2,5-dihydroxybenzoic acid (DHB) matrix | Sciex | High resolution mass spectra | |
Acetic acid | Sigma-Aldrich | A6283 | reagent |
Ammonium chloride | Sigma-Aldrich | 254134 | reagent |
aniline | Sigma-Aldrich | 132934 | reagent |
Autopol III digital polarimeter | Rudolph Research Analytical | polarimeter | |
AVANCE III HD (400 MHz) spectrometer | Bruker | NMR spectrometer | |
Bruker Ascend 500 (500 MHz) | Bruker | NMR spectrometer | |
Celite 535 | Sigma-Aldrich | 22138 | For Celite pad |
Dichloromethane | Sigma-Aldrich | 270997 | solvent |
Di-tert-butyl dicarbonate | Sigma-Aldrich | 361941 | reagent |
Ethyl Acetate | Sigma-Aldrich | 270989 | solvent |
Ethyl nitroacetate | Sigma-Aldrich | 192333 | reagent |
Imidazole | Sigma-Aldrich | I2399 | reagent |
INOVA 400WB (400 MHz) | Varian | NMR spectrometer | |
JMS-700 | JEOL | High resolution mass spectra | |
Methanol | Sigma-Aldrich | 322415 | solvent |
N-Boc-O-tosylhydroxylamine | Sigma-Aldrich | 775037 | reagent |
P-2000 | JASCO | polarimeter | |
Palladium hydroxide on carbon | Sigma-Aldrich | 212911 | reagent |
Phenyl-1H-tetrazole-5-thiol | TCI | P0640 | reagent |
Silica gel | Sigma-Aldrich | 227196 | For flash clromatography |
Silica gel on TLC plates | Merck | 60768 | TLC plate |
Sodium acetate | Sigma-Aldrich | S8750 | reagent |
Sodium azide | Sigma-Aldrich | S2002 | reagent |
Sodium borohydride | Sigma-Aldrich | 452882 | reagent |
Sodium carbonate | Sigma-Aldrich | S2127 | reagent |
tert-Butyldimethylsilyl chloride | Sigma-Aldrich | 190500 | reagent |
Tetrahydrofuran | Sigma-Aldrich | 401757 | solvent |
Toluene | Sigma-Aldrich | 244511 | solvent |
Zinc bromide | Sigma-Aldrich | 230022 | reagent |
Zinc chloride | Sigma-Aldrich | 429430 | reagent |