Summary

طريقة تطهير الأنسجة للتصوير العصبي من المقاييس المتوسطة إلى المجهرية

Published: May 10, 2022
doi:

Summary

يوفر البروتوكول طريقة مفصلة للتصوير العصبي في شريحة الدماغ باستخدام طريقة مسح الأنسجة ، ScaleSF. ويشمل البروتوكول إعداد أنسجة المخ، وتوضيح الأنسجة، والتعامل مع الشرائح التي تم تطهيرها، والتصوير المجهري بالليزر البؤري للهياكل العصبية من المستويات المجهرية إلى المجهرية.

Abstract

يتم توفير بروتوكول مفصل هنا لتصور الهياكل العصبية من المستويات المسكوبية إلى المجهرية في أنسجة المخ. يتم تصور الهياكل العصبية التي تتراوح من الدوائر العصبية إلى الهياكل العصبية دون الخلوية في شرائح دماغ الفئران التي تم تطهيرها بصريا باستخدام ScaleSF. طريقة التطهير هذه هي نسخة معدلة من ScaleS وهي طريقة إزالة الأنسجة المحبة للماء لشرائح الأنسجة التي تحقق قدرة تطهير قوية بالإضافة إلى مستوى عال من الحفاظ على إشارات التألق والسلامة الهيكلية. تم تصميم غرفة تصوير ثلاثية الأبعاد (3D) مطبوعة قابلة للتخصيص للتركيب الموثوق به لأنسجة المخ التي تم تطهيرها. تم إصلاح أدمغة الفئران التي تم حقنها بناقل فيروس مرتبط بالغدي يحمل جين بروتين فلورسنت أخضر محسن بنسبة 4٪ بارافورمالديهايد ومقطعة إلى شرائح بسماكة 1 مم باستخدام قطاعة أنسجة مهتزة. تم تطهير شرائح الدماغ باتباع بروتوكول المقاصة، والذي يتضمن حضانات متسلسلة في ثلاثة حلول، وهي محلول Sca l eS0، ومحلول ملحي عازل للفوسفات (–)، ومحلول ScaleS4، بإجمالي 10.5-14.5 ساعة. تم تركيب شرائح الدماغ التي تم تطهيرها على غرفة التصوير وتضمينها في هلام الأغاروز بنسبة 1.5٪ المذاب في محلول ScaleS4D25 (0). تم الحصول على صورة 3D للشرائح باستخدام مجهر مسح ليزر متحد البؤرة مجهز بعدسة موضوعية متعددة الغمر لمسافة عمل طويلة. بدءا من التصوير العصبي المنظاري ، نجحنا في تصور الهياكل العصبية الدقيقة تحت الخلوية ، مثل العمود الفقري التغصني والبوتونات المحورية ، في شرائح الدماغ التي تم تطهيرها بصريا. هذا البروتوكول من شأنه أن يسهل فهم الهياكل العصبية من الدائرة إلى مقاييس المكونات دون الخلوية.

Introduction

وقد حسنت طرق إزالة الأنسجة التصوير المستقل عن العمق للعينات البيولوجية والسريرية باستخدام المجهر الضوئي، مما يسمح باستخراج المعلومات الهيكلية عن الأنسجة السليمة 1,2. يمكن لتقنيات المقاصة البصرية أيضا تسريع وتقليل تكلفة التحليل النسيجي. حاليا ، تتوفر ثلاثة طرق رئيسية للتطهير: الطرق المحبة للماء ، الكارهة للماء ، والهيدروجيل القائم على 1,2. النهج المحبة للماء تفوق في الحفاظ على إشارات التألق وسلامة الأنسجة وهي أقل سمية مقارنة بالنهجين الآخرين 3,4.

وتحتل طريقة المقاصة المحبة للماء، ScaleS، موقعا مميزا من خلال الحفاظ على السلامة الهيكلية والجزيئية فضلا عن قدرتها القوية على التطهير (طيف التطهير والحفظ)5. في دراسة سابقة ، طورنا بروتوكول تطهير سريع ومتساوي القياس ، Scal eSF ، لشرائح الأنسجة (سمك ~ 1 مم) عن طريق تعديل إجراء المقاصة في ScaleS6. يتطلب بروتوكول التطهير هذا حضانة متسلسلة لشرائح الدماغ في ثلاثة حلول لمدة 10.5-14.5 ساعة. تتميز هذه الطريقة بطيف عالي التطهير والحفظ ، وهو متوافق حتى مع تحليل المجهر الإلكتروني (EM) (الشكل التكميلي 1) ، مما يسمح بالتصوير ثلاثي الأبعاد (3D) عالي الدقة متعدد النطاقات مع إعادة بناء إشارة دقيقة6. وبالتالي ، يجب أن يكون ScaleSF فعالا خاصة في الدماغ ، حيث تقوم الخلايا العصبية بوضع عمليات وفيرة ذات طول هائل ، وترتيب هياكل تحت الخلايا الدقيقة المتخصصة لنقل المعلومات واستقبالها. استخراج المعلومات الهيكلية مع المقاييس من الدائرة إلى المستويات دون الخلوية على الخلايا العصبية مفيد جدا نحو فهم أفضل لوظائف الدماغ.

هنا ، نقدم بروتوكولا مفصلا لتصور الهياكل العصبية بمقاييس من الميزوسكوبيك / الدائرة إلى المستوى المجهري / دون الخلوي باستخدام ScaleSF. ويشمل البروتوكول إعداد الأنسجة، وتوضيح الأنسجة، والتعامل مع الأنسجة التي تم تطهيرها، والتصوير المجهري بالليزر البؤري (CLSM) للأنسجة التي تم تطهيرها. يركز بروتوكولنا على استجواب الهياكل العصبية من الدائرة إلى مقاييس المكونات دون الخلوية. للحصول على إجراء مفصل لإعداد المحاليل والحقن المجسمة لناقلات الفيروسات المرتبطة بالغدية (AAV) في أدمغة الفئران ، راجع Miyawaki et al. 20167 و Okamoto et al. 20218 ، على التوالي.

Protocol

تمت الموافقة على جميع التجارب من قبل اللجان المؤسسية لرعاية واستخدام الحيوانات في جامعة جونتيندو (الموافقة رقم 2021245 ، 2021246) وتم إجراؤها وفقا للمبادئ التوجيهية الأساسية للسير السليم للتجارب على الحيوانات من قبل مجلس العلوم الياباني (2006). هنا ، تم استخدام الفئران الذكور C57BL / 6J التي تم حقنها ب…

Representative Results

تم تحقيق التطهير البصري لشريحة دماغ الماوس بسماكة 1 مم باستخدام هذا البروتوكول. يمثل الشكل 1B صور انتقال شريحة دماغ الفأر قبل وبعد العلاج المقاصة. جعلت طريقة تطهير الأنسجة شريحة دماغ فأر بسماكة 1 مم شفافة. تم العثور على توسع طفيف في الأحجام النهائية لشرائح الدماغ بعد الحضانة في محل?…

Discussion

الخطوات الحاسمة في إطار البروتوكول
هناك بعض الخطوات الحاسمة في البروتوكول التي ينبغي إجراؤها بأقصى درجات الحذر للحصول على نتائج ذات مغزى. التثبيت الموحد للعينات أمر حتمي للتصوير 3D داخل الأنسجة واسعة النطاق. يجب أن تحتوي العدسة الموضوعية والعينة وسيولة الغمر على مثيل محجوز مطا…

Disclosures

The authors have nothing to disclose.

Acknowledgements

ويشكر المؤلفان يوكو إيشيدا (جامعة جونتيندو) على إنتاج نواقل فيروس AAV وكيسارا هوشينو (جامعة جونتيندو) على المساعدة التقنية. تم دعم هذه الدراسة من قبل JSPS KAKENHI (JP20K07231 to K.Y.; JP21H03529 إلى T.F. ؛ JP20K07743 إلى M.K. ؛ JP21H02592 إلى H.H.) والبحث العلمي في مجال الابتكار “الرنين الحيوي” (JP18H04743 إلى H.H.). تم دعم هذه الدراسة أيضا من قبل الوكالة اليابانية للبحث والتطوير الطبي (AMED) (JP21dm0207112 إلى T.F. و H.H.) ، و Moonshot R & D من الوكالة اليابانية للعلوم والتكنولوجيا (JST) (JPMJMS2024 إلى H.H.) ، والبحوث الموجهة نحو الانصهار للعلوم والتكنولوجيا المدمرة (FOREST) من JST (JPMJFR204D إلى H.H.) ، والمنح المقدمة من معهد أبحاث أمراض الشيخوخة في كلية الطب بجامعة جونتيندو (X2016 إلى K.Y. ؛ X2001 إلى H.H.)، ومشروع العلامة التجارية للمدارس الخاصة.

Materials

16x multi-immersion objective lens Leica Microsystems HC FLUOTAR 16x/0.60 IMM CORR VISIR
Agar Nacalai Tesque 01028-85
Agarose TaKaRa Bio L03
Dimethyl sulfoxide Nacalai Tesque 13407-45
D-Sorbitol Nacalai Tesque 06286-55
γ-cyclodextrin Wako Pure Chemical Industries 037-10643
Glycerol Sigma-Aldrich G9012
Huygens Essential Scientific Volume Imaging ver. 18.10.0p8/21.10.1p0 64b
Imaris Bitplane ver. 9.0.0
Leica Application Suite X Leica Microsystems LAS X, ver. 3.5.5.19976
Methyl-β-cyclodextrin Tokyo Chemical Industry M1356
Paraformaldehyde Merck Millipore 1.04005.1000
Phosphate Buffered Saline (10x; pH 7.4) Nacalai Tesque 27575-31 10x PBS(–)
Sodium azide Nacalai Tesque 31233-55
Sodium pentobarbital Kyoritsu Seiyaku N/A
TCS SP8 Leica Microsystems N/A
Triton X-100 Nacalai Tesque 35501-15
Urea Nacalai Tesque 35940-65
Vibrating tissue slicer Dosaka EM PRO7N

References

  1. Susaki, E. A., Ueda, H. R. Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: Toward organism-level systems biology in mammals. Cell Chemical Biology. 23 (1), 137-157 (2016).
  2. Tainaka, K., Kuno, A., Kubota, S. I., Murakami, T., Ueda, H. R. Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annual Reviews of Cell and Developmental Biology. 32, 713-741 (2016).
  3. Ueda, H. R., et al. Whole-brain profiling of cells and circuits in mammals by tissue clearing and light-sheet microscopy. Neuron. 106 (3), 369-387 (2020).
  4. Ueda, H. R., et al. Tissue clearing and its applications in neuroscience. Nature Reviews. Neuroscience. 21 (2), 61-79 (2020).
  5. Hama, H., et al. ScaleS: an optical clearing palette for biological imaging. Nature Neuroscience. 18 (10), 1518-1529 (2015).
  6. Furuta, T., et al. Multi-scale light microscopy/electron microscopy neuronal imaging from brain to synapse with a tissue clearing method, ScaleSF. iScience. 25 (1), 103601 (2022).
  7. Miyawaki, A., et al. Deep imaging of cleared brain by confocal laser-scanning microscopy. Protocol Exchange. , (2016).
  8. Okamoto, S., et al. Exclusive labeling of direct and indirect pathway neurons in the mouse neostriatum by an adeno-associated virus vector with Cre/lox system. STAR Protocols. 2 (1), 100230 (2021).
  9. Kameda, H., et al. Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites. The European Journal of Neuroscience. 35 (6), 838-854 (2012).
  10. Sohn, J., et al. A single vector platform for high-level gene transduction of central neurons: Adeno-associated virus vector equipped with the Tet-off system. PLoS One. 12 (1), 0169611 (2017).
  11. Hama, H., et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nature Neuroscience. 14 (11), 1481-1488 (2011).
  12. Stepanyants, A., Martinez, L. M., Ferecsko, A. S., Kisvarday, Z. F. The fractions of short- and long-range connections in the visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 106 (9), 3555-3560 (2009).
  13. Kuramoto, E., et al. Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cerebral Cortex. 19 (9), 2065-2077 (2009).
  14. Matsuda, W., et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 29 (2), 444-453 (2009).
  15. Lin, R., et al. Cell-type-specific and projection-specific brain-wide reconstruction of single neurons. Nature Methods. 15 (12), 1033-1036 (2018).
  16. Winnubst, J., et al. Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell. 179 (1), 268-281 (2019).
  17. Neckel, P. H., Mattheus, U., Hirt, B., Just, L., Mack, A. F. Large-scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology, and ultrastructure. Scientific Reports. 6, 34331 (2016).

Play Video

Cite This Article
Yamauchi, K., Okamoto, S., Takahashi, M., Koike, M., Furuta, T., Hioki, H. A Tissue Clearing Method for Neuronal Imaging from Mesoscopic to Microscopic Scales. J. Vis. Exp. (183), e63941, doi:10.3791/63941 (2022).

View Video