Este método de purificación bioquímica con análisis proteómico basado en espectrometría de masas facilita la caracterización robusta de los núcleos de fibrilla amiloide, lo que puede acelerar la identificación de objetivos para prevenir la enfermedad de Alzheimer.
Las inclusiones fibrilares proteínicas son características patológicas clave de múltiples enfermedades neurodegenerativas. En las primeras etapas de la enfermedad de Alzheimer (EA), los péptidos beta amiloides forman protofibrillas en el espacio extracelular, que actúan como semillas que crecen gradualmente y maduran en grandes placas amiloides. A pesar de esta comprensión básica, el conocimiento actual de la estructura de la fibrilla amiloide, la composición y los patrones de deposición en el cerebro es limitado. Una barrera importante ha sido la incapacidad de aislar fibrillas amiloides altamente purificadas de los extractos cerebrales. La purificación por afinidad y los enfoques basados en microdisección de captura láser se han utilizado anteriormente para aislar amiloides, pero están limitados por la pequeña cantidad de material que se puede recuperar. Este protocolo novedoso y robusto describe la purificación bioquímica de los núcleos de placa amiloide utilizando solubilización de dodecil sulfato de sodio (SDS) con ultracentrifugación y ultrasonido de gradiente de densidad de sacarosa y produce fibrillas altamente puras de pacientes con EA y tejidos cerebrales modelo de EA. El análisis proteómico ascendente basado en espectrometría de masas (EM) del material purificado representa una estrategia sólida para identificar casi todos los componentes proteicos primarios de las fibrillas amiloides. Estudios proteómicos previos de proteínas en las coronas amiloides han revelado una colección inesperadamente grande y funcionalmente diversa de proteínas. En particular, después de refinar la estrategia de purificación, el número de proteínas copurificantes se redujo en más de 10 veces, lo que indica la alta pureza del material insoluble SDS aislado. La tinción negativa y la microscopía electrónica de inmuno-oro permitieron confirmar la pureza de estas preparaciones. Se requieren más estudios para comprender los atributos espaciales y biológicos que contribuyen a la deposición de estas proteínas en inclusiones amiloides. En conjunto, esta estrategia analítica está bien posicionada para aumentar la comprensión de la biología amiloide.
El amiloide es una disposición supramolecular extremadamente estable que se encuentra en un panel diverso de proteínas, algunas de las cuales conducen a cambios patológicos1. La acumulación de agregados amiloides intra o extracelulares se observa en varias enfermedades neurodegenerativas2. Los agregados amiloides son heterogéneos y están enriquecidos con un gran número de proteínas y lípidos3. En los últimos años, el interés en el proteoma amiloide ha generado un interés sustancial entre los neurocientíficos básicos y traslacionales. Se han desarrollado varios métodos para extraer y purificar agregados amiloides de tejidos cerebrales humanos de ratón y post mortem. La microdisección de captura láser, la inmunoprecipitación, la descelularización y el aislamiento bioquímico de agregados amiloides son métodos ampliamente utilizados para extraer y purificar placas amiloides, fibrillas y oligómeros 4,5,6,7. Muchos de estos estudios se han centrado en determinar la composición proteica de estos depósitos fibrilares estrechamente empaquetados utilizando EM semicuantitativa. Sin embargo, los resultados disponibles son inconsistentes, y el número sorprendentemente grande de proteínas co-purificadoras previamente reportadas son difíciles de interpretar.
La principal limitación de la literatura existente que describe el proteoma del núcleo amiloide en los cerebros modelo de ratón con EA y EA es que el material purificado contiene un número inmanejable de proteínas copurificantes. El objetivo general de este método es superar esta limitación y desarrollar una purificación bioquímica robusta para aislar los núcleos de fibrillas amiloides. Esta estrategia emplea un método bioquímico basado en la ultracentrifugación de gradiente de densidad de sacarosa previamente descrito para el aislamiento de fracciones amiloides enriquecidas insolubles de SDS de tejidos cerebrales humanos y de ratón post mortem AD 8,9. Este método se basa en la literatura existente, pero va más allá con la ultrasonicación y los lavados SDS para eliminar la mayoría de las proteínas asociadas a amiloides unidas libremente, lo que lleva al aislamiento de fibrillas amiloides altamente purificadas (Figura 1). Las fibrillas purificadas por este protocolo superan varios desafíos existentes que se encuentran con frecuencia en los estudios estructurales de fibrillas amiloides aisladas de extractos cerebrales. La visualización de estas fibrillas con microscopía electrónica de transmisión (TEM) confirma la integridad y pureza del material purificado (Figura 2). En este estudio, las fibrillas aisladas se solubilizan y se digieren en péptidos con tripsina, y el análisis de EM sin etiqueta puede revelar fácilmente la identidad de las proteínas que forman el núcleo de la fibrilla. En particular, algunas de estas proteínas tienen una tendencia inherente a formar ensamblajes supramoleculares en orgánulos no unidos a la membrana. Además, muchas de las proteínas identificadas en el análisis de las fibrillas beta-amiloides (Aβ) también están asociadas con otras enfermedades neurodegenerativas, lo que sugiere que estas proteínas pueden desempeñar un papel clave en múltiples proteinopatías.
Es poco probable que este método SDS / ultrasonido altere o interrumpa la estructura de los núcleos de la fibrilla. El material purificado también es adecuado para una amplia gama de enfoques de análisis proteómico de arriba hacia abajo y de abajo hacia arriba y estrategias adicionales de análisis estructural basadas en EM, como la reticulación química o el intercambio de hidrógeno-deuterio. La recuperación general utilizando este método es relativamente alta y, por lo tanto, es adecuada para estudios estructurales detallados, que requieren microgramos a miligramos del material purificado. El material purificado también es adecuado para estudios estructurales utilizando crioEM y microscopía de fuerza atómica. Este protocolo, en combinación con el etiquetado isotópico estable de mamíferos, puede facilitar los estudios de resonancia magnética nuclear (RMN) en estado sólido de la estructura amiloide10.
Desarrollar una comprensión clara de la estructura y composición amiloide es un desafío para los biólogos estructurales y bioquímicos debido a las complejidades biológicas y las limitaciones experimentales en la extracción de fibrillas purificadas de los tejidos cerebrales de la EA16,17. Las fibrillas amiloides son polimórficas a nivel molecular, mostrando una población heterogénea de longitudes y complejidades variables18,19<sup…
The authors have nothing to disclose.
Este trabajo fue apoyado por la subvención R01AG061865 de los NIH a R.J.V. y J.N.S. Los autores agradecen a los miembros del grupo de investigación Vassar y Savas de la Universidad Northwestern por sus discusiones reflexivas. También agradecemos sinceramente a los Dres. Ansgar Seimer y Ralf Langen de la Universidad del Sur de California por su aporte crucial. Agradecemos a la Dra. Farida Korabova por la preparación de muestras y las imágenes de microscopía electrónica de tinción negativa en el Centro de Microscopía Avanzada de la Universidad Northwestern.
Acclaim PepMap 100 C18 HPLC column 0.075 mm x 20 mm | Thermo Scientific | 164535 | Alternative instruments, chemicals and antibodies from other manufacturers can be used |
Ammonium bicarbonate | Sigma-Aldrich | 9830 | |
anti-amyloid beta (1-16) 6E10 antibody | Biolegend | 803001 | |
anti-amyloid beta (17-24) 4G8 antibody | Biolegend | 800701 | |
anti-amyloid beta (N terminus 82E1) antibody | IBL America | 10323 | |
anti-amyloid fibril LOC antibody | EMD Millipore | AB2287 | |
BCA kit | Thermo Fisher Scientific | 23225 | |
Bioruptor Pico Plus | Diagenode | B01020001 | |
Calcium Chloride | Sigma-Aldrich | C1016 | |
Collagenase | Sigma-Aldrich | C0130 | |
Complete Protease Inhibitor Cocktail | Sigma-Aldrich | 11697498001 | |
Dnase I | Thermo Fisher Scientific | EN0521 | |
EDTA | Sigma-Aldrich | EDS | |
Guanidine hydrochloride | Sigma-Aldrich | G4505 | |
HyperSep C18 Cartridges | Thermo Fisher Scientific | 60108-302 | |
Integrated Proteomics Pipeline – IP2 | http://www.integratedproteomics.com/ | ||
Iodoacetamide (IAA) | Sigma-Aldrich | I1149 | |
K54 Tissue Homogenizing System Motor | Cole Parmer | Glas-Col 099C | |
MaxQuant | https://www.maxquant.org/ | ||
Micro BCA kit | Thermo Fisher Scientific | 23235 | |
Nanoviper 75 μm x 50 cm | Thermo Scientific | 164942 | |
Optima L-90K Ultracentrifuge | Beckman Coulter | BR-8101P-E | |
Orbitrap Fusion TribridMass Spectrometer | Thermo Scientific | IQLAAEGAAPFADBMBCX | |
Pierce C18 Spin Columns | Thermo Fisher Scientific | 89870 | |
Precellys 24 tissue homogenizer | Bertin Instruments | P000062-PEVO0-A | |
ProteaseMAX(TM) Surfactant Trypsin Enhancer | Promega | V2072 | |
RawConverter | http://www.fields.scripps.edu/rawconv/ | ||
Sodium azide | VWR | 97064-646 | |
Sodium dodecyl sulfate (SDS) | Sigma-Aldrich | 74255 | |
Sorvall Legend Micro 21R Microcentrifuge | Thermo Fisher Scientific | 75002446 | |
Speed Vaccum Concentrator | Labconco | 7315021 | |
Tris-2-carboxyethylphosphine (TCEP) | Sigma-Aldrich | C4706-2G | |
Tris-HCl | Thermo Fisher Scientific | 15568025 | |
Trypsin Gold-Mass spec grade | Promega | V5280 | |
UltiMate 3000 RSLCnano System | Thermo Scientific | ULTIM3000RSLCNANO |