Summary

Cría masiva y estudios moleculares en insectos plaga tortricidae

Published: March 25, 2022
doi:

Summary

El presente protocolo describe el método de cría de insectos plaga tortricidas en los laboratorios. Los procedimientos para distinguir el sexo de los insectos y extraer ácidos nucleicos para la secuenciación de alto rendimiento se establecen utilizando dos plagas tortricidas.

Abstract

Tortricidae (Lepidoptera), comúnmente conocidos como polillas tortrix o leafroller, comprende muchas plagas agrícolas y forestales, que causan graves pérdidas agrícolas. Para comprender la biología de tales polillas plaga, las técnicas fundamentales han tenido una gran demanda. Aquí, los métodos para la cría en masa, las observaciones y los estudios moleculares se desarrollan utilizando dos tortrix de té, Homona magnanima y Adoxophyes honmai (Lepidoptera: Tortricidae). Los insectos fueron criados en masa con una dieta artificial en rodajas y mantenidos por endogamia durante más de 100 generaciones teniendo en cuenta sus características biológicas. Los insectos tienen varios dimorfismos sexuales; por lo tanto, es difícil distinguir el sexo durante las etapas de desarrollo, que han impedido los ensayos posteriores. El presente trabajo destacó que el sexo de las larvas de tortricidas podría determinarse mediante la observación de testículos o tinción de orceína láctico-acética para visualizar el cromosoma W específico de la hembra. Además, utilizando los métodos de determinación del sexo, el presente estudio permitió la extracción de ácido nucleico de embriones determinados por sexo y la aplicación hacia la secuenciación de alto rendimiento. Estos consejos son aplicables para otros insectos plaga y facilitarán más estudios morfológicos y genéticos.

Introduction

Los insectos lepidópteros representan más del 10% de todas las especies vivas descritas1, y ciertas especies de taxones causan graves daños a las plantas y graves pérdidas agrícolas 2,3. Aunque se han desarrollado estudios moleculares y genéticos utilizando modelos de insectos como el gusano de seda Bombyx mori 4,5, los insectos plaga siguen sin ser investigados, en parte debido a las dificultades para la cría y manipulación 6,7. Por lo tanto, los estudios y técnicas fundamentales son necesarios para comprender la biología de tales insectos plaga no modelo.

Los Tortricidae (Lepidoptera), comúnmente conocidos como tortrix o polillas de las hojas, comprenden muchas plagas agrícolas y forestales8. De los taxones de insectos, la tortrix oriental del té Homona magnanima Diakonoff y la tortrix de frutas de verano Adoxophyes honmai Yasuda son plagas polífagas graves que se sabe que dañan los árboles de té en el este de Asia7. Las dos especies ponen racimos de huevos planos y ovalados (o masas de huevos) que consisten en huevos delgados, blandos y frágiles cubiertos por secreciones maternas. Aunque las etapas de embriogénesis son cruciales para el desarrollo de insectos y las determinaciones del sexo9, las estructuras de los huevos impiden que un análisis más detallado comprenda la biología de los insectos. Es importante superar las dificultades para un mayor estudio de las plagas que oviponen una masa de huevos tan compleja.

Aquí, para comprender la biología de los tortricidos, se han desarrollado métodos para la cría en masa, observaciones y estudios moleculares utilizando A. honmai y H. magnanima. En primer lugar, los métodos de cría en masa mantienen a ambos tortricidos más de 100 generaciones por endogámicos. La separación de los huevos de la masa de huevo concatenada similar a una escama facilitó la observación de la embriogénesis de los tortricidos utilizando disolventes alcalinos y orgánicos previamente desarrollados a partir de técnicas utilizadas en moscas10. Además, el presente estudio estableció la discriminación sexual de embriones pequeños mediante el desarrollo de métodos de tinción de la cromatina sexual de hembras lepidópteras utilizando orceína láctico-acética11. Mediante la combinación de estos métodos, se extrajeron ácidos nucleicos de alta calidad y cantidad de embriones determinados por sexo, lo que de otro modo sería difícil de establecer6. El ARN extraído se utilizó para la secuenciación de próxima generación. Colectivamente, los métodos presentados aquí se aplican a otros insectos lepidópteros y otros taxones de insectos.

Protocol

1. Recolección de insectos y cría masiva Recolectar insectos tortricidas de los campos siguiendo las Referencias 8,12 publicadas anteriormente.NOTA: Las larvas de H. magnanima y A. honmai se recogen de hojas de té dañadas (Figura 1A); los adultos son atraídos usando luz UV portátil de 4 W (longitud de onda de 365 nm, ver Tabla de Materiales, …

Representative Results

Establecimiento de líneas de acogida y su mantenimientoLa viabilidad de las larvas recolectadas en el campo se atribuye de manera diferente a la ubicación del campo, las estaciones y las condiciones de cría (por ejemplo, el 90% de la viabilidad en Taiwán, Taoyuan, como se muestra en Arai et al.12). Aproximadamente el 30%-50% de los pares generarán la próxima generación como de costumbre. Para H. magnanima y A. honmai, las matrilinas se han mantenido me…

Discussion

Tortricid comprende varias plagas agrícolas y forestales; el presente estudio presentó métodos para criar tortrix a lo largo de generaciones, observar la embriogénesis y el sexo de los insectos, y realizar análisis moleculares utilizando embriones maduros.

Uno de los obstáculos para el estudio de insectos plaga es establecer métodos de cría. Especialmente, la endogamia a veces afecta negativamente la aptitud de la especie. La reducción de la aptitud física por la consanguínea, llama…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Los autores desean agradecer el apoyo de las Becas de Investigación para Jóvenes Científicos de la Sociedad Japonesa para la Promoción de la Ciencia (JSPS) [Número de subvención 19J13123 y 21J00895].

Materials

1/2 ounce cup FP CHUPA CP070009 insect rearing; https://www.askul.co.jp/p/6010417/
1/2 ounce cup lid FP CHUPA CP070011 insect rearing; https://www.askul.co.jp/p/6010434/?int_id=recom_DtTogether
99.7% acetic acid FUJIFILM Wako Chemicals Co., Osaka, Japan 36289 fixation; https://labchem-wako.fujifilm.com/jp/product/detail/W01ALF036289.html
Agilent 2100 Bioanalyzer Agilent Technologies not shown Nucleic acids quantification; https://www.agilent.com/en/product/automated-electrophoresis/bioanalyzer-systems/bioanalyzer-instrument
Agilent RNA6000 nano kit Agilent Technologies 5067-1511 Nucleic acids quantification; https://www.agilent.com/cs/library/usermanuals/Public/G2938-90034_RNA6000Nano_KG
.pdf
benzalkonium chloride solution Nihon Pharmaceutical Co., Ltd No.4987123116046 Sterilization; https://www.nihon-pharm.co.jp/consumer/products/disinfection.html
Cotton AOUME 8-1611-02 insect rearing; https://item.rakuten.co.jp/athlete-med/10006937/?scid=af_pc_etc&sc2id=af_113_0_1
DAPI solution Dojindo, Tokyo, Japan 340-07971 stainings; https://www.dojindo.co.jp/products/D523/
Disodium Hydrogenphosphate FUJIFILM Wako Chemicals Co. 4.98748E+12 Na2HPO4; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0119-0286.html
dsDNA HS quantification kit Invitrogen Q33231 Nucleic acids quantification; https://www.thermofisher.com/order/catalog/product/Q33230?SID=srch-srp-Q33230
Econospin RNA II column Epoch Life Science Inc. EP-11201 RNA extraction; http://www.epochlifescience.com/Product/SpinColumn/minispin.aspx
Ethanol FUJIFILM Wako Chemicals Co., Osaka, Japan 4.98748E+12 fixation; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0105-0045.html
Ethylenediamine-N,N,N',N'-tetraacetic Acid Tetrasodium Salt Tetrahydrate (4NA) FUJIFILM Wako Chemicals Co. 4.98748E+12 Cell lysis buffer (EDTA); https://labchem-wako.fujifilm.com/jp/product/detail/W01T02N003.html
Glassine paper HEIKO 2100010 insect rearing; https://www.monotaro.com/p/8927/0964/?utm_id=g_pla&
utm_medium=cpc&utm_source=
Adw
heat block WSC-2620 PowerBLOCK ATTO, Tokyo, Japan 4002620 incubation; https://www.attoeng.site/
heptane FUJIFILM Wako Chemicals Co., Osaka, Japan 4.98748E+12 fixation; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0108-0015.html
INSECTA LF Nosan Co., Ltd not shown Artificial diet; https://www.nosan.co.jp/business/fodder/ist.htm
ISOGENII Nippon Gene 311-07361 RNA extraction; https://www.nippongene.com/siyaku/product/extraction/isogen2/isogen2.html
isopropanol FUJIFILM Wako Chemicals Co. 4.98748E+12 nucleic acids extraction; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0232-0004.html
Lactic acid FUJIFILM Wako Chemicals Co. 4.98748E+12 Stainings; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0112-0005.html
methanol FUJIFILM Wako Chemicals Co., Osaka, Japan 4.98748E+12 fixation; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0113-0182.html
MSV-3500 vortex Biosan BS-010210-TAK Voltex mixer; https://biosan.lv/products/-msv-3500-multi-speed-vortex/
Nano Photometer NP 80 Implen not shown Nucleic acids quantification; https://www.implen.de/product-page/implen-nanophotometer-np80-microvolume-cuvette-spectrophotometer/tech-specs/
Natural pack wide Inomata chemical 1859 insect rearing; https://www.monotaro.com/g/03035766/?t.q=%E3%83%8A%E3%83%81%E3%83%A5%E3%
83%A9%E3%83%AB%E3%83%91%
E3%83%83%E3%82%AF%E3%83%
AF%E3%82%A4%E3%83%89
NEBNext Ultra II RNA Library Prep Kit for Illumina New England BioLabs E7770S Library preparation; https://www.nebj.jp/products/detail/2039
orcein FUJIFILM Wako Chemicals Co. 4.98748E+12 Stainings; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0115-0094.html
Paraformaldehyde FUJIFILM Wako Chemicals Co. 160-16061 fixation; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0116-1606.html
Polyoxyethylene(20) Sorbitan Monolaurate FUJIFILM Wako Chemicals Co. 4.98748E+12 Tween-20; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0116-2121.html
Portable UV Black Light (4W, 365nm wavelength) Southwalker Co., Ltd., Kanagawa, Japan not shown Insect collection; http://www.southwalker.com/shopping/?pid=1364614057-467328
Potassium Chloride FUJIFILM Wako Chemicals Co. 4.98748E+12 KCl; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0116-0354.html
Potassium Dihydrogen Phosphate FUJIFILM Wako Chemicals Co. 4.98748E+12 KH2PO4; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0116-0424.html
ProLong Diamond Antifade Mountant Invitrogen, MA, USA P36965 antifade; https://www.thermofisher.com/order/catalog/product/P36965
Proteinase K Solution Merck 71049-4CN DNA extraction; https://www.merckmillipore.com/JP/ja/product/Proteinase-K-Solution-600-mAU-ml,EMD_BIO-71049
protein precipitation solution Qiagen 158912 DNA extraction; https://www.qiagen.com/us/products/discovery-and-translational-research/lab-essentials/buffers-reagents/puregene-accessories/?cmpid=PC_DA_NON_
BIOCOMPARE_ProductListing_
0121_RD_MarketPlace_ProductC
Qubit V4 Invitrogen Q33238 Nucleic acids quantification; https://www.thermofisher.com/order/catalog/product/Q33238
rifampicin FUJIFILM Wako Chemicals Co., Osaka, Japan 4.98748E+12 Sterilization; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0118-0100.html
RNA HS quantification kit Invitrogen Q32855 Nucleic acids quantification; https://www.thermofisher.com/order/catalog/product/Q32852
RNase solution Nippon Gene 313-01461 RNA extraction; https://www.nippongene.com/siyaku/product/modifying-enzymes/rnase-a/rnase-s.html
Silk Mate 2S Nosan Co., Ltd not shown Artificial diet; https://www.nosan.co.jp/business/fodder/ist.htm
Sodium Chloride FUJIFILM Wako Chemicals Co. 4.98748E+12 NaCl; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0119-0166.html
Sodium Dodecyl Sulfate FUJIFILM Wako Chemicals Co. 4.98748E+12 Cell lysis buffer (SDS); https://labchem-wako.fujifilm.com/jp/product/detail/W01W0119-1398.html
sodium hypochlorite aqueous solution FUJIFILM Wako Chemicals Co., Osaka, Japan 4.98748E+12 egg separation; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0119-0220.html
Tetracycline Hydrochloride FUJIFILM Wako Chemicals Co., Osaka, Japan 4.98748E+12 Sterilization; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0120-1656.html
Tris-HCl FUJIFILM Wako Chemicals Co. 4.98748E+12 Cell lysis buffer; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0120-1536.html
ultra-pure distilled water Invitrogen 10977023 RNA extraction; https://www.thermofisher.com/order/catalog/product/10977015

References

  1. Gaston, K. J. The magnitude of global insect species richness. Conservation Biology. 5 (3), 283-296 (1991).
  2. Pogue, M. A world revision of the genus Spodoptera Guenée (Lepidoptera: Noctuidae). Memoirs of the American Entomological Society. 43, 1 (2002).
  3. Matsuura, H., Naito, A. Studies on the cold-hardiness and overwintering of Spodoptera litura F. (Lepidoptera: Noctuidae): VI. Possible overwintering areas predicted from meteorological data in Japan. Applied Entomology and Zoology. 32 (1), 167-177 (1997).
  4. Mita, K., et al. The construction of an EST database for Bombyx mori and its application. Proceedings of the National Academy of Sciences of the United States of America. 100 (24), 14121-14126 (2003).
  5. Kawamoto, M., et al. High-quality genome assembly of the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology. 107, 53-62 (2019).
  6. Fukui, T., et al. In vivo masculinizing function of the Ostrinia furnacalis Masculinizer gene. Biochemical and Biophysical Research Communications. 503 (3), 1768-1772 (2018).
  7. Arai, H., Ishitsubo, Y., Nakai, M., Inoue, M. N. A simple method to disperse eggs from lepidopteran scale-like egg masses and to observe embryogenesis. Entomological Science. 25 (1), 12497 (2022).
  8. vander Geest, L. P., Evenhuis, H. H. . Tortricid pests: their biology, natural enemies and control. , (1991).
  9. Kiuchi, T., et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature. 509 (7502), 633-636 (2014).
  10. Rand, M. D., Kearney, A. L., Dao, J., Clason, T. Permeabilization of Drosophila embryos for introduction of small molecules. Insect Biochemistry and Molecular Biology. 40 (11), 792-804 (2010).
  11. Kageyama, D., Traut, W. Opposite sex-specific effects of Wolbachia and interference with the sex determination of its host Ostrinia scapulalis. Proceedings of the Royal Society B. 271 (1536), 251-258 (2004).
  12. Arai, H., Lin, S. R., Nakai, M., Kunimi, Y., Inoue, M. N. Closely related male-killing and nonmale-killing Wolbachia strains in the oriental tea tortrix Homona magnanima. Microbial Ecology. 79 (4), 1011-1020 (2020).
  13. Schalamun, M., et al. Harnessing the MinION: An example of how to establish long-read sequencing in a laboratory using challenging plant tissue from Eucalyptus pauciflora. Molecular Ecology Resources. 19 (1), 77-89 (2019).
  14. Winnebeck, E. C., Millar, C. D., Warman, G. R. Why does insect RNA look degraded. Journal of Insect Science. 10 (1), 159 (2010).
  15. Ivey, C. T., Carr, D. E., Eubanks, M. D. Effects of inbreeding in Mimulus guttatus on tolerance to herbivory in natural environments. Ecology. 85 (2), 567-574 (2004).
  16. Saccheri, I., et al. Inbreeding and extinction in a butterfly metapopulation. Nature. 392 (6675), 491-494 (1998).
  17. Crnokrak, P., Roff, D. A. Inbreeding depression in the wild. Heredity. 83 (3), 260-270 (1999).
  18. Keller, L. F., Waller, D. M. Inbreeding effects in wild populations. Trends in Ecology & Evolution. 17 (5), 230-241 (2002).
  19. Margaritis, L. H., Kafatos, F. C., Petri, W. H. The eggshell of Drosophila melanogaster. I. Fine structure of the layers and regions of the wild-type eggshell. Journal of Cell Science. 43 (1), 1-35 (1980).
  20. Sugimoto, T. N., Ishikawa, Y. A male-killing Wolbachia carries a feminizing factor and is associated with degradation of the sex-determining system of its host. Biology Letters. 8 (3), 412-415 (2012).

Play Video

Cite This Article
Arai, H., Ishitsubo, Y., Nakai, M., Inoue, M. N. Mass-Rearing and Molecular Studies in Tortricidae Pest Insects. J. Vis. Exp. (181), e63737, doi:10.3791/63737 (2022).

View Video