Este protocolo proporciona un método de aislamiento de ADN simple y rentable para el análisis de alteraciones de la microbiota intestinal murina durante el desarrollo de enfermedades autoinmunes.
La microbiota intestinal tiene un papel importante en la educación del sistema inmunológico. Esta relación es extremadamente importante para comprender las enfermedades autoinmunes que no solo son impulsadas por factores genéticos, sino también por factores ambientales que pueden desencadenar la aparición y / o empeorar el curso de la enfermedad. Un estudio publicado anteriormente sobre la dinámica de la microbiota intestinal en ratones hembra LMR/lpr propensos al lupus mostró cómo los cambios en la microbiota intestinal pueden alterar la progresión de la enfermedad. Aquí, se describe un protocolo para extraer muestras representativas de la microbiota intestinal para estudios de autoinmunidad. Las muestras de microbiota se recogen del ano y se procesan, de las cuales se extrae el ADN utilizando un método de fenol-cloroformo y se purifica mediante precipitación de alcohol. Después de realizar la PCR, los amplicones purificados se secuencian utilizando una plataforma de secuenciación de próxima generación en el Laboratorio Nacional de Argonne. Finalmente, se analizan los datos de secuenciación del gen de ARN ribosómico 16S. Como ejemplo, se muestran los datos obtenidos de las comparaciones de la microbiota intestinal de ratones LMR/lpr con o sin CX3CR1. Los resultados mostraron diferencias significativas en géneros que contienen bacterias patógenas, como las del filo Proteobacteria, así como el género Bifidobacterium, que se considera parte de la microbiota comensal sana. En resumen, este método de aislamiento de ADN simple y rentable es confiable y puede ayudar a la investigación de los cambios en la microbiota intestinal asociados con enfermedades autoinmunes.
Los seres humanos y las bacterias han coexistido durante mucho tiempo. Han establecido una relación codependiente con efectos beneficiosos mutuos que influye en las respuestas inmunes del huésped de manera cuantitativa y cualitativa1. Estudios recientes sugieren una asociación entre la composición de la microbiota intestinal y la patogénesis de enfermedades autoinmunes que incluyen la esclerosis múltiple 2, la artritis reumatoide3, la diabetes tipo2 4, la enfermedad inflamatoria intestinal5 y el lupus eritematoso sistémico (LES)6. Sin embargo, aún no está claro si la microbiota intestinal es la causa principal o un efecto secundario de estas enfermedades autoinmunes7. Potencialmente, la microbiota intestinal podría exacerbar la enfermedad durante la fase efectora de los trastornos autoinmunes o desempeñar un papel en la regulación de la inducción de estas enfermedades8.
Se ha descrito disbiosis intestinal en ratones hembra propensos al lupus MRL/Mp-Faslpr (LMR/lpr), y se observaron cambios en la microbiota intestinal con un agotamiento significativo de los lactobacilos9. Cuando se administró por vía oral una mezcla de cinco cepas de Lactobacillus, los síntomas similares al lupus se atenuaron en gran medida en estos ratones, lo que sugiere un papel esencial de la microbiota en la regulación de la patogénesis del LES.
La siguiente técnica de extracción de ADN permite seguir las fluctuaciones de la microbiota y analizarlas cualitativa y cuantitativamente durante el curso de la enfermedad murina similar al LES en ratones propensos al lupus. Ya sea para examinar la microbiota intestinal sana o definir la disbiosis, es importante examinar críticamente cómo se recopilan los datos y si son precisos y reproducibles10. Cada paso es crítico en este proceso. Se debe utilizar una metodología adecuada para extraer ADN microbiano, ya que cualquier posible problema que introduzca sesgos durante el proceso de extracción de ADN podría resultar en una representación microbiana inexacta. Si bien el método fenol-cloroformo se describe aquí, existen kits disponibles comercialmente para extraer ADN de bacterias que funcionan bien en casos particulares11. Sin embargo, su usabilidad está limitada por el costo y la cantidad de muestra requerida.
El protocolo presentado aquí es rentable y requiere solo una pequeña cantidad de muestra. Funciona bien con cualquier tipo de muestra de heces y es útil para estudiar la dinámica de la microbiota intestinal a lo largo del tiempo, así como las comparaciones entre grupos. El ADN se aísla con un método de purificación de alcohol, que utiliza fenol, cloroformo y alcohol isoamílico. La extracción a base de alcohol ayuda a limpiar y eliminar la muestra de proteínas y lípidos, donde el ADN se precipita en el paso final. El método propuesto tiene una eficiencia y calidad significativamente altas y ha demostrado ser preciso en la identificación de poblaciones bacterianas. Una nota crítica durante el procedimiento es que la contaminación del ADN puede ocurrir, y por lo tanto se requiere un manejo adecuado de la muestra12.
Luego, el ADN es analizado por las plataformas de secuenciación de próxima generación para el gen 16S rRNA, como el Illumina MiSeq. En particular, la región hipervariable V4 se analiza para proporcionar una mejor cuantificación de los taxones de alto rango13. El análisis bioinformático posterior se subcontrata, seguido de un análisis interno utilizando métodos estadísticos estándar. Existen numerosos programas de software bioinformático de código abierto disponibles para la secuenciación posterior, y el tipo de análisis realizados depende en gran medida de la cuestión biológica específica de interés14. Este protocolo se centra específicamente en los pasos experimentales previos a la secuenciación y proporciona un método más versátil, rentable, comparable y eficiente para obtener ADN de muestras fecales.
Una microbiota intestinal equilibrada puede proteger al cuerpo humano de las enfermedades. Una vez que este equilibrio se ve interrumpido por desencadenantes externos o internos, las consecuencias pueden ser devastadoras. Este método presenta una forma de analizar la dinámica de la microbiota intestinal en modelos murinos. El método es adecuado no solo para comparaciones entre grupos, sino también para rastrear la microbiota intestinal a lo largo del tiempo para identificar mejor los factores dependientes del tiempo …
The authors have nothing to disclose.
Agradecemos la ayuda del Laboratorio Nacional de Argonne y nuestros bioinformáticos colaboradores. Este trabajo es apoyado por varios NIH y subvenciones internas.
0.1 mm glass beads | BioSpec Products | 11079101 | |
2 mL screw cap tubes | Thermo Fisher Scientific | 3488 | |
20% SDS | FisherScientific | BP1311-1 | SDS 20% |
96% Ethanol, Molecular Biology Grade | Thermo Fisher Scientific | T032021000CS | |
Ammonium Acetate (5 M) | Thermo Fisher Scientific | AM9071 | NH4AC 5M |
B6.129P2(Cg)-Cx3cr1tm1Litt/J | Jackson Laboratory | 005582 | |
Bullet Blender storm 24 | Next Advance | 4116-BBY24M | Homogenizer |
Chloroform | FisherScientific | C298-500 | |
DEPC-Treated Water | Thermo Fisher Scientific | AM9916 | |
Ethylenediamine Tetraacetic Acid | FisherScientific | BP118-500 | EDTA |
Foil plate seal | FisherScientific | NC0302491 | |
Kimwipes-Kimtech 34256 | FisherScientific | 06-666C | |
MRL/MpJ-Faslpr/J (MRL/lpr) mice | Jackson Laboratory | 000485 | |
Nanodrop 2000 spectrophotomer | Thermo Fisher Scientific | ND2000CLAPTOP | |
Phenol: chloroform: isoamylalchohol (25:24:1) | FisherScientific | BP1752I-400 | PCI |
Scale with 4 decimals | Mettler Toledo | MS205DU | |
Skirted 96-well plates | Thermo Fisher Scientific | AB-0800 | |
Sodium chloride | FisherScientific | 15528154 | NaCl |
Tris Hydrochloride | FisherScientific | BP1757-100 | |
Vortex | Scientific Industries | SI-0236 |