Este protocolo describe una técnica de imagen confocal para detectar tres modos de fusión en células cromafines suprarrenales bovinas. Estos modos de fusión incluyen 1) fusión cerrada (también llamada kiss-and-run), que involucra la apertura y el cierre del poro de fusión, 2) la fusión de permanencia, que involucra la apertura del poro de fusión y el mantenimiento del poro abierto, y 3) la fusión retráctil, que involucra la contracción de la vesícula fusionada.
La apertura y el cierre dinámicos de los poros de fusión median la exocitosis y la endocitosis y determinan su cinética. Aquí, se demuestra en detalle cómo se utilizó la microscopía confocal en combinación con el registro de pinza de parche para detectar tres modos de fusión en células de cromafina suprarrenal bovina de cultivo primario. Los tres modos de fusión incluyen 1) fusión cerrada (también llamada kiss-and-run), que involucra la apertura y cierre del poro de fusión, 2) la fusión de permanencia, que involucra la apertura del poro de fusión y el mantenimiento del poro abierto, y 3) la fusión retráctil, que involucra la contracción del perfil en forma de Ω generado por la fusión hasta que se fusiona completamente en la membrana plasmática.
Para detectar estos modos de fusión, la membrana plasmática se marcó sobreexpresando mNeonGreen unido con el dominio PH de la fosfolipasa C δ (PH-mNG), que se une al fosfatidilinositol-4,5-bisfosfato (PtdIns(4,5)P2) en la valva orientada al citosol de la membrana plasmática; las vesículas se cargaron con el falso neurotransmisor fluorescente FFN511 para detectar la liberación de contenido vesicular; y Atto 655 se incluyó en la solución de baño para detectar el cierre de poros de fusión. Estas tres sondas fluorescentes se tomaron imágenes simultáneamente a ~ 20-90 ms por cuadro en células cromafines vivas para detectar la apertura del poro de fusión, la liberación de contenido, el cierre del poro de fusión y la fusión de cambios en el tamaño de la vesícula. El método de análisis se describe para distinguir tres modos de fusión de estas mediciones de fluorescencia. El método descrito aquí puede, en principio, aplicarse a muchas células secretoras más allá de las células cromafines.
La fusión de membrana media muchas funciones biológicas, incluida la transmisión sináptica, la homeostasis de la glucosa en sangre, la respuesta inmune y la entrada viral 1,2,3. La exocitosis, que implica la fusión de vesículas en la membrana plasmática, libera neurotransmisores y hormonas para lograr muchas funciones importantes, como las actividades de la red neuronal. La fusión abre un poro para liberar contenido vesicular, después de lo cual el poro puede cerrarse para recuperar la vesícula fusionante, que se denomina kiss-and-run 1,4. Tanto la apertura irreversible como reversible del poro de fusión se puede medir con grabaciones de capacitancia conectadas a células combinadas con grabaciones de conductancia de poro de fusión de fusión de una sola vesícula.
Esto a menudo se interpreta como un reflejo de la fusión de colapso completo, que implica la dilatación de la fusión hasta el aplanamiento de la vesícula fusionada, y el beso y la carrera, que implica la apertura y el cierre del poro de fusión, respectivamente 5,6,7,8,9,10,11,12,13 . Estudios recientes de imágenes de agotamiento por emisión confocal y estimulada (STED) en células cromafines observaron directamente la apertura y el cierre del poro de fusión (kiss-and-run, también llamado close-fusion), la apertura del poro de fusión que mantiene una forma de Ω con un poro abierto durante mucho tiempo, denominada fusión de permanencia y la reducción de la vesícula fusionante hasta que se fusiona completamente con la membrana plasmática, que reemplaza la fusión de colapso completo para fusionar las vesículas fusionadas con la membrana plasmática4, 8,14,15,16,17.
En las neuronas, se han detectado apertura y cierre de poros de fusión con imágenes que muestran la liberación de puntos cuánticos precargados en vesículas que son más grandes que el poro de fusión y con mediciones de conductancia de poro de fusión en la cara de liberación de terminales nerviosos 5,18,19. Las células cromafines suprarrenales son ampliamente utilizadas como modelo para el estudio de la exocitosis y la endocitosis20,21. Aunque las células cromafines contienen grandes vesículas de núcleo denso, mientras que las sinapsis contienen pequeñas vesículas sinápticas, las proteínas de exocitosis y endocitosis en las células cromafines y sinapsis son bastante análogas 10,11,12,20,21,22,23.
Aquí, se describe un método para medir estos tres modos de fusión utilizando un método de imagen confocal combinado con electrofisiología en células de cromafin suprarrenal bovina (Figura 1). Este método consiste en la carga de falsos neurotransmisores fluorescentes (FFN511) en vesículas para detectar la exocitosis; adición de Atto 655 (A655) en la solución de baño para llenar el perfil en forma de Ω generado por fusión, y etiquetado de la membrana plasmática con el dominio PH de fosfolipasa C δ (PH), que se une a PtdIns(4,5)P2 en la membrana plasmática 8,15,24. La dinámica de los poros de fusión se puede detectar a través de cambios en diferentes intensidades fluorescentes. Aunque se describe para las células cromafines, el principio de este método descrito aquí se puede aplicar ampliamente a muchas células secretoras mucho más allá de las células cromafines.
Se describe un método de imagen microscópica confocal para detectar la dinámica de la liberación de poros y transmisores de fusión, así como tres modos de fusión, fusión cercana, fusión de permanencia y fusión retráctil en células cromafines suprarrenales bovinas 4,24. Se describe un método electrofisiológico para despolarizar la célula y, por lo tanto, evocar exocitosis y endocitosis. El procesamiento sistemático de imágenes confocales proporcio…
The authors have nothing to disclose.
Agradecemos a los Programas de Investigación Intramuros del NINDS (ZIA NS003009-13 y ZIA NS003105-08) por apoyar este trabajo.
Adenosine 5'-triphosphate magnesium salt | Sigma | A9187-500MG | ATP for preparing internal solution |
Atto 655 | ATTO-TEC GmbH | AD 655-21 | Atto dye to label bath solution |
Basic Nucleofector for Primary Neurons | Lonza | VSPI-1003 | Electroporation transfection buffer along with kit |
Boroscilicate capillary glass pipette | Warner Instruments | 64-0795 | Standard wall with filament OD=2.0 mm ID=1.16 mm Length=7.5 cm |
Bovine serum albumin | Sigma | A2153-50G | Reagent for gland digestion |
Calcium Chloride 2 M | Quality Biological | 351-130-721 | Reagent for preparing bath solution |
Cell Strainers, 100 µm | Falcon | 352360 | Material for filtering chromaffin cell suspension |
Cesium hydroxide solution | Sigma | 232041 | Reagent for preparing internal solution and Cs-glutamate/Cs-EGTA stock buffer |
Collagenase P | Sigma | 1.1214E+10 | Enzyme for gland digestion |
Coverslip | Neuvitro | GG-14-Laminin | GG-14-Laminin, 14 mm dia.#1 thick 60 pieces Laminin coated German coverslips |
D-(+)-Glucose | Sigma | G8270-1KG | Reagent for preparing Locke’s solution and bath solution |
DMEM | ThermoFisher Scientific | 11885092 | Reagent for preparing culture medium |
EGTA | Sigma | 324626-25GM | Reagent for preparing Cs-EGTA stock buffer for bath solution |
Electroporation and Nucleofector | Amaxa Biosystems | Nucleofector II | Transfect plasmids into cells |
Fetal bovine serum | ThermoFisher Scientific | 10082147 | Reagent for preparing culture medium |
FFN511 | Abcam | ab120331 | Fluorescent false neurotransmitter to label vesicles |
Guanosine 5'-triphosphate sodium salt hydrate | Sigma | G8877-250MG | GTP for preparing internal solution |
HEPES | Sigma | H3375-500G | Reagent for preparing Locke’s solution |
Igor Pro | WaveMetrics | Igor pro | Software for patch-clamp analysis and imaging data presentation |
Leica Application Suite X software | Leica | LAS X software | Confocal software for imaging data collection and analysis |
Leica TCS SP5 Confocal Laser Scanning Microscope | Leica | Leica TCS SP5 | Confocal microscope for imaging data collection |
L-Glutamic acid | Sigma | 49449-100G | Reagent for preparing Cs-glutamate stock buffer for bath solution |
Lock-in amplifier | Heka | Lock-in | Software for capacitance recording |
Magnesium Chloride 1 M | Quality Biological | 351-033-721EA | Reagent for preparing internal solution and bath solution |
Metallized Hemacytometer Hausser Bright-Line | Hausser Scientific | 3120 | Counting chamber |
Microforge | Narishige | MF-830 | Polish pipettes to enhance the formation and stability of giga-ohm seals |
Millex-GP Syringe Filter Unit, 0.22 µm | Millipore | SLGPR33RB | Material for glands wash and digestion |
mNG(mNeonGreen) | Allele Biotechnology | ABP-FP-MNEONSB | Template for PH-mNeonGreen construction |
Nylon mesh filtering screen 100 micron | EIKO filtering co | 03-100/32 | Material for filtering medulla suspension |
Patch clamp EPC-10 | Heka | EPC-10 | Amplifier for patch-clamp data collection |
PH-EGFP | Addgene | Plasmid #51407 | Backbone for PH-mNeonGreen construction |
Pipette puller | Sutter Instrument | P-97 | Make pipettes for patch-clamp recording |
Potassium Chloride | Sigma | P5404-500G | Reagent for preparing Locke’s solution and bath solution |
Pulse software | Heka | Pulse | Software for patch-clamp data collection |
Recording chamber | Warner Instruments | 64-1943/QR-40LP | coverslip chamber, apply patch-clamp pipette on live cells |
Sodium chloride | Sigma | S7653-1KG | Reagent for preparing Locke’s solution, bath solution and internal solution |
Sodium hydroxide | Sigma | S5881-500G | Reagent for preparing Locke’s solution |
Sodium phosphate dibasic | Sigma | S0876-500G | Reagent for preparing Locke’s solution |
Sodium phosphate monobasic | Sigma | S8282-500G | Reagent for preparing Locke’s solution |
Stirring hot plate | Barnsted/Thermolyne | type 10100 | Heater for pipette coating with wax |
Syringe, 30 mL | Becton Dickinson | 302832 | Material for glands wash and digestion |
Tetraethylammonium chloride | Sigma | T2265-100G | TEA for preparing bath solution |
Trypsin inhibitor | Sigma | T9253-5G | Reagent for gland digestion |
Type F Immersion liquid | Leica | 195371-10-9 | Leica confocal mounting oil |