Summary

Bitki Köklerini Toprak Kaynaklı Mikroorganizmalarla Enfekte Etmek için Aşılama Stratejileri

Published: March 01, 2022
doi:

Summary

Bu protokol, bitki köklerini toprak kaynaklı mikroplarla aşılamak için stratejilerin ayrıntılı bir özetini sunar. Verticillium longisporum ve Verticillium dahliae mantarları için örneklendirilen üç farklı kök enfeksiyon sistemi tanımlanmıştır. Potansiyel uygulamalar ve olası aşağı akış analizleri vurgulanır ve her sistem için avantajlar veya dezavantajlar tartışılır.

Abstract

Rizosfer, bitki köklerinin sürekli olarak zorlandığı oldukça karmaşık bir mikrobiyal topluluğu barındırır. Kökler çok çeşitli mikroorganizmalarla yakın temas halindedir, ancak toprak kaynaklı etkileşimler üzerine yapılan çalışmalar hala yer üstü organlarında yapılanların gerisindedir. Model bitkileri model kök patojenlerle enfekte etmek için bazı aşılama stratejileri literatürde tanımlanmış olsa da, kapsamlı bir metodolojik genel bakış elde etmek zor olmaya devam etmektedir. Bu sorunu çözmek için, kök-mikrop etkileşimlerinin biyolojisi hakkında fikir edinmek için uygulanabilecek üç farklı kök aşılama sistemi tam olarak tanımlanmıştır. Örnek olarak, Verticillium türleri (yani, V. longisporum ve V. dahliae) kök istilacı model patojenler olarak kullanılmıştır. Bununla birlikte, yöntemler hem patojenik hem de faydalı olan diğer kök kolonize edici mikroplara kolayca uyarlanabilir. Bitki ksilemini kolonize ederek, Verticillium spp. gibi vasküler toprak kaynaklı mantarlar benzersiz bir yaşam tarzı sergiler. Kök istilasından sonra, akropetal olarak ksilem damarları yoluyla yayılırlar, sürgüne ulaşırlar ve hastalık semptomları ortaya çıkarırlar. Model konakçı olarak üç temsili bitki türü seçildi: Arabidopsis thaliana, ekonomik açıdan önemli yağlı tohumlu kolza (Brassica napus) ve domates (Solanum lycopersicum). Adım adım protokoller verilmiştir. Patojenite tahlillerinin temsili sonuçları, belirteç genlerinin transkripsiyonel analizleri ve muhabir yapıları tarafından bağımsız doğrulamalar gösterilmiştir. Ayrıca, her bir aşılama sisteminin avantajları ve dezavantajları kapsamlı bir şekilde tartışılmaktadır. Bu kanıtlanmış protokoller, kök-mikrop etkileşimleri hakkındaki araştırma soruları için yaklaşımlar sağlamada yardımcı olabilir. Bitkilerin topraktaki mikroplarla nasıl başa çıktığını bilmek, tarımı iyileştirmek için yeni stratejiler geliştirmek için çok önemlidir.

Introduction

Doğal topraklarda, nötr, zararlı veya bitkilere faydalı olabilecek şaşırtıcı sayıda mikropyaşar 1. Birçok bitki patojeni toprak kaynaklıdır, kökleri çevreler ve yeraltı organına saldırır. Bu mikroorganizmalar çok çeşitli kladlara aittir: mantarlar, oomisetler, bakteriler, nematodlar, böcekler ve bazı virüsler 1,2. Çevresel koşullar enfeksiyonu desteklediğinde, duyarlı bitkiler hastalıklı hale gelecek ve mahsul verimi düşecektir. Küresel ısınma ve aşırı hava koşulları gibi iklim değişikliğinin etkileri, toprak kaynaklı bitki patojenlerinin oranını artıracaktır3. Bu nedenle, bu yıkıcı mikropları ve bunların gıda ve yem üretimi üzerindeki etkilerini, aynı zamanda doğal ekosistemler üzerindeki etkilerini incelemek giderek daha önemli hale gelecektir. Ek olarak, toprakta köklerle sıkı bir şekilde etkileşime giren ve bitki büyümesini, gelişimini ve bağışıklığını teşvik eden mikrobiyal karşılıkçılar vardır. Patojenlerle karşı karşıya kaldıklarında, bitkiler rizosferde patojenleri baskılayarak konakçı sağkalımını destekleyebilecek spesifik rakipleri aktif olarak işe alabilir 4,5,6,7. Bununla birlikte, yararlı kök-mikrop etkileşimlerinde yer alan mekanik detaylar ve yollar genellikle hala bilinmemektedir6.

Bu nedenle, kök-mikrop etkileşimlerinin genel anlayışını genişletmek esastır. Model çalışmaları yapmak ve bulguları tarımsal uygulamalara aktarmak için köklerin toprak kaynaklı mikroorganizmalarla aşılanması için güvenilir yöntemler gereklidir. Topraktaki faydalı etkileşimler, örneğin, Serendipita indica (eski adıyla Piriformospora indica), azot sabitleyici Rhizobium spp. veya mikorizal mantarlarla incelenirken, bilinen toprak kaynaklı bitki patojenleri arasında Ralstonia solanacearum, Phytophthora spp., Fusarium spp. ve Verticillium spp.1 bulunur. Son ikisi, küresel olarak dağılmış ve vasküler hastalıklara neden olan mantar cinsleridir2. Verticillium spp. (Ascomycota) yüzlerce bitki türünü enfekte edebilir – otsu yıllıklar, odunsu çok yıllık bitkiler ve birçok mahsul bitkisi de dahil olmak üzere büyük ölçüde dikotiledonlar 2,8. Verticillium’un hifleri köke girer ve ksilem damarlarınıkolonize etmek için merkezi silindire doğru hem hücreler arası hem de hücre içi olarak büyür 2,9. Bu damarlarda, mantar yaşam döngüsünün çoğunda kalır. Ksilem özü besin açısından fakir olduğundan ve bitki savunma bileşikleri taşıdığından, mantar bu eşsiz ortama uyum sağlamalıdır. Bu, patojenin konakçısı10,11’de hayatta kalmasını sağlayan kolonizasyonla ilgili proteinlerin salgılanmasıyla gerçekleştirilir. Kök vaskülatürüne ulaştıktan sonra, mantar ksilem damarları içinde akroleptal olarak yeşilliklere yayılabilir ve bu da konakçının sistemik kolonizasyonuna yol açar 9,12. Bu noktada bitki büyümesinde olumsuz etkilenmektedir 9,10,13. Örneğin, bodurluk ve sarı yaprakların yanı sıra erken yaşlanma13,14,15,16 meydana gelir.

Bu cinsin bir üyesi, tarımsal olarak önemli yağlı tohumlu kolza, karnabahar ve model bitki Arabidopsis thaliana12 gibi sütyen konakçılara oldukça adapte olmuş Verticillium longisporum’dur. Birkaç çalışma, toprak kaynaklı vasküler hastalıklar ve ortaya çıkan kök savunma yanıtları13,15,16,17 hakkında kapsamlı bilgiler edinmek için V. longisporum ve A. thaliana’yı birleştirdi. Basit duyarlılık testi, V. longisporum / A. thaliana model sistemi kullanılarak gerçekleştirilebilir ve her iki organizma için de köklü genetik kaynaklar mevcuttur. V. longisporum ile yakından ilişkili olan patojen Verticillium dahliae’dir. Her iki mantar türü de benzer bir vasküler yaşam tarzı ve istila süreci gerçekleştirse de, köklerden yapraklara yayılma etkinlikleri ve A. thaliana’da ortaya çıkan hastalık semptomları farklıdır: V. longisporum genellikle erken yaşlanmayı indüklerken, V. dahliae enfeksiyonu solgunluğa neden olur18. Son zamanlarda, metodolojik bir özet, A. thaliana’yı V. longisporum veya V. dahliae ile enfekte etmek için farklı kök aşılama stratejileri sunmuş ve deneysel kurulumların planlanmasına yardımcı olmuştur19. Tarlada, V. longisporum zaman zaman yağlı tohumlu kolzaüretiminde önemli hasara neden olurken, V. dahliae asma, patates ve domates8 gibi çeşitli ekili türlerden oluşan çok geniş bir konakçı yelpazesine sahiptir. Bu, her iki patojeni de incelemek için ekonomik olarak ilginç modeller haline getirir.

Bu nedenle, aşağıdaki protokoller, kök aşılamaları için olası yaklaşımları örneklemek için hem V. longisporum hem de V. dahliae’yi model kök patojenleri olarak kullanmaktadır. Arabidopsis (Arabidopsis thaliana), yağlı tohumlu kolza (Brassica napus) ve domates (Solanum lycopersicum) model konakçı olarak seçildi. Metodolojilerin ayrıntılı açıklamaları aşağıdaki metinde ve beraberindeki videoda bulunabilir. Her aşılama sistemi için avantaj ve dezavantajlar tartışılmıştır. Birlikte ele alındığında, bu protokol koleksiyonu, kök-mikrop etkileşimleri bağlamında belirli araştırma soruları için uygun bir yöntemin belirlenmesine yardımcı olabilir.

Protocol

1. Mantar kültürleri ve bitki aşılama sistemleri için ortam Sıvı Patates Dekstroz Suyu (PDB): Isıya dayanıklı bir şişede ultra saf suda 21 g / L PDB hazırlayın. Sıvı Czapek Dekstroz Suyu (CDB): Isıya dayanıklı bir şişede ultra saf suda 42 g / L CDB hazırlayın. Petri kabı aşılama sistemi için ortam: Ultra saf suda 1,5 g / L Murashige ve Skoog ortamı (MS) ve 8 g / L agar ile ısıya dayanıklı bir şişe hazırlayın.NOT: Bu ortamda şekerden k…

Representative Results

Protokolü takiben, bitkiler V. longisporum ( suş Vl4325) veya V. dahliae (izole JR218) ile yetiştirildi ve aşılandı. Etkinliği kanıtlamak ve verilen protokollerin bazı yeteneklerini vurgulamak için çeşitli senaryolar tasarlanmıştır. Temsili sonuçlar gösterilir. Antimikrobiyal indol-glukozinolat (IG) biyosentezinde rol oynayan genlerin ekspresyonel indüksiyonu, Verticillium enfeksiyonunun değe…

Discussion

Toprak kaynaklı fitopatojenlerin neden olduğu muazzam verim kayıpları nedeniyle1, tarım stratejilerinin veya mahsul çeşitlerinin iyileştirilmesi gerekmektedir. Toprak kaynaklı hastalıkların patogenezine ilişkin sınırlı içgörü, daha dirençli bitkilerin gelişimini engellemektedir. Altta yatan patomekanizmaların araştırılması gerekir, bunun için sağlam bir metodolojik platform gereklidir. Bildirilen aşılama prosedürleri, kök-mikrop etkileşimlerindeki çok faktörlü ol…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Yazarlar, Tim Iven ve Jaqueline Komorek’e bu yöntemler üzerindeki önceki çalışmaları için, Wolfgang Dröge-Laser grubuna (Farmasötik Biyoloji Bölümü, Würzburg Üniversitesi, Almanya) bu çalışma için gerekli ekipman ve kaynakları sağladıkları için ve Wolfgang Dröge-Laser ve Philipp Kreisz’e (her ikisi de Würzburg Üniversitesi) makalenin eleştirel redaksiyonu için teşekkür etmektedir. Bu çalışma “Deutsche Forschungsgemeinschaft” (DFG, DR273/15-1,2) tarafından desteklenmiştir.

Materials

Agar (Gelrite) Carl Roth Nr. 0039 all systems described require Gelrite
Arabidopsis thaliana wild-type NASC stock Col-0 (N1092)
Autoclave Systec VE-100
BlattFlaeche Datinf GmbH BlattFlaeche software to determine leaf areas
Brassica napus wild-type see Floerl et al., 2008 rapid-cycling rape genome ACaacc
Cefotaxime sodium Duchefa C0111
Chicanery flask 500 mL Duran Group / neoLab E-1090 Erlenmeyer flask with four baffles
Collection tubes 50 mL Sarstedt 62.547.254 114 x 28 mm
Czapek Dextrose Broth medium Duchefa C1714
Digital camera Nikon D3100 18-55 VR
Exsiccator (Desiccator ) Duran Group 200 DN, 5.8 L Seal with lid to hold chlorine gas
Fluorescence Microscope Leica Leica TCS SP5 II
HCl Carl Roth P074.3
KNO3 Carl Roth P021.1 ≥ 99 %
KOH Carl Roth 6751
Leukopor BSN medical GmbH 2454-00 AP non-woven tape 2.5 cm x 9.2 m
MES (2-(N-morpholino)ethanesulfonic acid) Carl Roth 4256.2 Pufferan ≥ 99 %
MgSO4 Carl Roth T888.1 Magnesiumsulfate-Heptahydrate
Murashige & Skoog medium (MS) Duchefa M0222 MS including vitamins
NaClO Carl Roth 9062.1
Percival growth chambers CLF Plant Climatics GmbH AR-66L2
Petri-dishes Sarstedt 82.1473.001 size ØxH: 92 × 16 mm
Plastic cups (500 mL, transparent) Pro-pac, salad boxx 5070 size: 108 × 81 × 102 mm
Pleated cellulose filter Hartenstein FF12 particle retention level 8–12 μm
poly klima growth chamber poly klima GmbH PK 520 WLED
Potato Dextrose Broth medium SIGMA Aldrich P6685 for microbiology
Pots Pöppelmann GmbH TO 7 D or TO 9,5 D Ø 7 cm resp. Ø 9.5 cm
PromMYB51::YFP see Poncini et al., 2017 MYB51 reporter line YFP (i.e. 3xmVenus with NLS)
Reaction tubes 2 mL Sarstedt 72.695.400 PCR Performance tested
Rotary (orbital) shaker Edmund Bühler SM 30 C control
Sand (bird sand) Pet Bistro, Müller Holding 786157
Soil Einheitserde spezial SP Pikier (SP ED 63 P)
Solanum lycopersicum wild-type see Chavarro-Carrero et al., 2021 Type: Moneymaker
Thoma cell counting chamber Marienfeld 642710 depth 0.020 mm; 0.0025 mm2
Ultrapure water (Milli-Q purified water) MERK IQ 7003/7005 water obtained after purification
Verticillium dahliae see Reusche et al., 2014 isolate JR2
Verticillium longisporum Zeise and von Tiedemann, 2002 strain Vl43

References

  1. Mendes, R., Garbeva, P., Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Review. 37 (5), 634-663 (2013).
  2. Yadeta, K. A., Thomma, B. P. H. J. The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers in Plant Science. 4, 97 (2013).
  3. Delgado-Baquerizo, M., et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nature Climate Change. 10 (6), 550-554 (2020).
  4. Berendsen, R. L., et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. The ISME Journal. 12 (6), 1496-1507 (2018).
  5. Yuan, J., et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome. 6 (1), 156 (2018).
  6. Liu, H., et al. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens. New Phytologist. 229 (5), 2873-2885 (2021).
  7. Wang, H., Liu, R., You, M. P., Barbetti, M. J., Chen, Y. Pathogen biocontrol using plant growth-promoting bacteria (PGPR): role of bacterial diversity. Microorganisms. 9 (9), 1988 (2021).
  8. Inderbitzin, P., Subbarao, K. V. Verticillium systematics and evolution: how confusion impedes Verticillium wilt management and how to resolve it. Phytopathology. 104 (6), 564-574 (2014).
  9. Eynck, C., Koopmann, B., Grunewaldt-Stoecker, G., Karlowsky, P., von Tiedemann, A. Differential interactions of Verticillium longisporum und V. dahliae with Brassica napus with molecular and histological techniques. European Journal of Plant Pathology. 118 (3), 259-274 (2007).
  10. Floerl, S., et al. Defence reactions in the apoplastic proteome of oilseed rape (Brassica napus var. napus) attenuate Verticillium longisporum growth but not disease symptoms. BMC Plant Biology. 8, 129 (2008).
  11. Leonard, M., et al. Verticillium longisporum elicits media-dependent secretome responses with capacity to distinguish between plant-related environments. Frontiers in Microbiology. 11, 1876 (2020).
  12. Depotter, J. R. L., et al. Verticillium longisporum, the invisible threat to oilseed rape and other brassicaceous plant hosts. Molecular Plant Pathology. 17 (7), 1004-1016 (2016).
  13. Fröschel, C., et al. A gain-of-function screen reveals redundant ERF transcription factors providing opportunities for resistance breeding toward the vascular fungal pathogen Verticillium longisporum. Molecular Plant-Microbe Interactions. 32 (9), 1095-1109 (2019).
  14. Zhou, L., Hu, Q., Johansson, A., Dixelius, C. Verticillium longisporum and V. dahliae: infection and disease in Brassica napus. Plant Pathology. 55 (1), 137-144 (2006).
  15. Ralhan, A., et al. The vascular pathogen Verticillium longisporum requires a jasmonic acid-independent COI1 function in roots to elicit disease symptoms in Arabidopsis shoots. Plant Physiology. 159 (3), 1192-1203 (2012).
  16. Reusche, M., et al. Stabilization of cytokinin levels enhances Arabidopsis resistance against Verticillium longisporum. Molecular Plant-Microbe Interactions. 26 (8), 850-860 (2013).
  17. Iven, T., et al. Transcriptional activation and production of tryptophan-derived secondary metabolites in Arabidopsis roots contributes to the defense against the fungal vascular pathogen Verticillium longisporum. Molecular Plant. 5 (6), 1389-1402 (2012).
  18. Reusche, M., et al. Infections with the vascular pathogens Verticillium longisporum and Verticillium dahliae induce distinct disease symptoms and differentially affect drought stress tolerance of Arabidopsis thaliana. Environmental and Experimental Botany. 108, 23-37 (2014).
  19. Fröschel, C. In-depth evaluation of root infection systems using the vascular fungus Verticillium longisporum as soil-borne model pathogen. Plant Methods. 17 (1), 57 (2021).
  20. Karapapa, V. K., Bainbridge, B. W., Heale, J. B. Morphological and molecular characterization of Verticillium longisporum comb, nov., pathogenic to oilseed rape. Mycological Research. 101 (11), 1281-1294 (1997).
  21. Poncini, L., et al. In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer. PLoS One. 12 (10), 1-21 (2017).
  22. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 9 (7), 671-675 (2012).
  23. Fradin, E. F., et al. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiology. 150 (1), 320-332 (2009).
  24. Singh, S., et al. The plant host Brassica napus induces in the pathogen Verticillium longisporum the expression of functional catalase peroxidase which is required for the late phase of disease. Molecular Plant-Microbe Interactions. 25 (4), 569-581 (2012).
  25. Zeise, K., von Tiedemann, A. Application of RAPD-PCR for virulence type analysis within Verticillium dahliae and Verticillium longisporum. Journal of Phytopathology. 150 (10), 557-563 (2002).
  26. Fröschel, C., et al. Plant roots employ cell-layer-specific programs to respond to pathogenic and beneficial microbes. Cell Host & Microbe. 29 (2), 299-310 (2021).
  27. Gigolashvili, T., et al. The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. The Plant Journal. 50 (5), 886-901 (2007).
  28. Back, M. A., Haydock, P. P. J., Jenkinson, P. Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathology. 51 (6), 683-697 (2002).
  29. Behrens, F. H., et al. Suppression of abscisic acid biosynthesis at the early infection stage of Verticillium longisporum in oilseed rape (Brassica napus). Molecular Plant Pathology. 20 (12), 1645-1661 (2019).
  30. Vorholt, J. A., Vogel, C., Carlström, C. I., Müller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host & Microbe. 22 (2), 142-155 (2017).

Play Video

Cite This Article
Marsell, A., Fröschel, C. Inoculation Strategies to Infect Plant Roots with Soil-Borne Microorganisms. J. Vis. Exp. (181), e63446, doi:10.3791/63446 (2022).

View Video