Summary

角膜缘血管丛全圆烧灼治疗啮齿动物手术诱发的青光眼

Published: February 15, 2022
doi:

Summary

该协议的目的是表征一种基于角膜缘血管丛 360° 热烧灼的青光眼性神经退行性变性的新模型,诱导亚急性高眼压症。

Abstract

青光眼是全球第二大失明原因,是一组异质性眼部疾病,其特征是视神经结构损伤和视网膜神经节细胞 (RGC) 变性,通过中断视觉信息从眼睛到大脑的传递而导致视觉功能障碍。眼压升高是最重要的危险因素;因此,已经通过遗传或实验方法在啮齿动物中开发了几种高眼压模型来研究疾病的原因和影响。其中,已经报告了一些局限性,例如手术侵入性、功能评估不足、需要广泛培训以及视网膜损伤的高度可变扩展。本工作描述了一种简单、低成本和高效的诱发啮齿动物高眼压的方法,该方法基于角膜缘血管丛的低温、全圆烧灼,角膜缘血管丛是房水引流的主要成分。新模型提供了一种技术上简单、无创且可重复的亚急性高眼压症,与进行性 RGC 和视神经变性相关,以及独特的术后临床恢复率,允许通过电生理学和行为学方法 进行体内 功能研究。

Introduction

医学文献将青光眼理解为一组异质性视神经病,其特征是视网膜神经节细胞 (RGC)、树突、体细胞和轴突进行性变性,导致视盘结构拔罐(挖掘)和视神经功能退化,通过中断视觉信息从眼睛到大脑的传递,导致不受控制的病例黑朦1.青光眼是目前全球不可逆转性失明的最常见原因,预计到 2040 年将达到约 1.118 亿人2,从而严重影响患者的生活质量 (QoL),并导致重大的社会经济问题3

眼内压 (IOP) 升高是青光眼发生和进展的最重要且唯一可改变的危险因素之一。在多种类型的青光眼中,除正常张力型青光眼 (NTG) 外,所有青光眼在临床病史中的某个时间都与眼压升高有关。尽管在靶向眼压和减缓或阻止疾病进展方面取得了显着的临床和手术进展,但患者仍然因青光眼而失明 4,5。因此,彻底了解这种疾病的复杂和多因素病理生理学对于开发更有效的治疗方法至关重要,特别是为RGC提供神经保护。

在了解疾病机制的各种实验方法中,基于高眼压症(OHT)的动物模型与人类青光眼最为相似。啮齿动物模型特别有用,因为它们成本低,易于操作,可以进行基因操作,寿命短,并且具有与人类相当的眼部解剖学和生理学特征,例如房水产生和引流6,7,8,9,10,11,12,13 .目前使用的模型包括将高渗盐水注射到巩膜外静脉后小梁网硬化14、前房内注射微珠 15 或粘弹性物质 16、涡静脉烧灼 17、用氩激光光凝小梁网 18、环缘缝合19,以及使用年龄相关 OHT 的转基因模型(DBA/2J 小鼠)8.然而,侵入性、术后角膜混浊、眼前节破坏、广泛的学习曲线、昂贵的设备和高度可变的术后眼压是与当前模型相关的少数报告陷阱之一,因此需要开发 OHT 的替代模型来克服这些问题20,21,22

本方案正式确定了一种新的外科手术,以诱导 OHT 作为青光眼的代理,基于啮齿动物的角膜缘丛烧灼 (LPC)23。这是一种简单、可重复、可访问且非侵入性的模型,可提供高效率和低 IOP 升高的变异性,与独特的高临床完全恢复率相关,因此在减少每个实验中使用的动物数量的情况下提供 体内 功能评估。手术技术诱导亚急性 OHT,并在几天内逐渐恢复到基线水平,这模拟了急性闭角型青光眼中可见的高血压发作。此外,模型中的眼压恢复之后是持续的青光眼性神经变性,这对于未来 RGC 继发性变性的机制研究很有用,尽管 IOP 得到充分控制,但 RGC 的继发性变性发生在几例人类青光眼病例中。

Protocol

所有程序均按照视觉和眼科研究协会 (ARVO) 的《在眼科和视觉研究中使用动物的声明》进行,并得到里约热内卢联邦大学健康科学中心科学中心动物使用伦理委员会的批准(协议 083/17)。在本研究中,使用了两性李斯特帽大鼠,年龄为2-3个月,体重为180-320克。然而,该程序可以适用于不同年龄范围的不同大鼠品系。 1. 高眼压手术及临床随访 家畜在受?…

Representative Results

定量变量表示为平均值±均值标准误差 (SEM)。除了OHT组和对照组之间的IOP动态比较(图1F)外,使用双向方差分析进行统计分析,然后进行Sidak的多重比较检验。p 值< 0.05 被认为具有统计学意义。 图 1 说明了全圆角膜缘神经丛烧灼术 (LPC) 模型的手术步骤,具有重要的标志,例如 360° 热诱导的角膜缘血管消失,以及手术结束时?…

Discussion

角膜缘丛烧灼术 (LPC) 是一种新型的后小梁模型,其优点是它针对不需要结膜或肌腫夹层的易于接近的血管结构17,28。与涡旋静脉烧灼模型(一种基于脉络膜静脉引流手术损伤的著名 OHT 模型)不同,静脉淤血预计不会影响 LPC 模型中的眼压升高,因为角膜缘静脉位于房水流出的上游。此外,它在技术上易于学习且成本低廉,主要需要低温热烧灼器。此…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢我们的实验室技术人员 José;尼尔森·多斯桑托斯、戴安·曼达里诺·托雷斯、何塞·弗朗西斯科·蒂布尔西奥、吉尔多·布里托·德索萨和卢西亚诺·卡瓦尔坎特·费雷拉。这项研究由 FAPERJ、CNPq 和 CAPES 资助。

Materials

Acetone Isofar 201 Used for electron microscopy tissue preparation (step 5)
Active electrode for electroretinography Hansol Medical Co Stainless steel needle 0.25 mm × 15 mm
Anestalcon Novartis Biociências S/A MS-1.0068.1087 Proxymetacaine hydrochloride 0.5%
Calcium chloride Vetec 560 Used for electron microscopy tissue preparation (step 5)
Cautery Low Temp Fine Tip 10/bx Bovie Medical Corporation AA00 Low-temperature ophthalmic cautery
Cetamin Syntec do Brasil Ltda 000200-3-000003 Ketamine hydrochloride 10%
DAKO Dako North America S3023 Antifade mounting medium
DAPI Thermo Fisher Scientific 28718-90-3 diamidino-2-phenylindole; blue fluorescent nuclear counterstain; emission at 452±3 nm
Ecofilm Cristália Produtos Químicos Farmacêuticos Ltda MS-1.0298.0487 Carmellose sodium 0.5%
EPON Resin Polysciences, Inc. Epoxy resin used for electron microscopy, composed of a mixture of four reagents: Poly/Bed 812 Resin (CAT#08791); DDSA – Dodecenylsuccinic Anhydride (CAT#00563); NMA – Nadic Methyl Anhydride (CAT#00886); DMP-30 – 2,4,6-tris(dimethylaminomethyl)phenol (CAT#00553)
Glutaraldehyde Electron Microscopy Sciences 16110 Used for electron microscopy tissue preparation (step 5)
Hyabak União Química Farmacêutica Nacional S/A MS-8042140002 Sodium hyaluronate 0.15%
Icare Tonolab Icare Finland Oy TV02 (model number) Rebound handheld tonometer
IgG donkey anti-mouse antibody + Alexa Fluor 555 Thermo Fisher Scientific A31570 Secondary antibody solution
LCD monitor 23 inches Samsung Electronics Co. Ltd. S23B550 Model LS23B550, for electroretinogram recording
LSM 510 Meta Carl Zeiss Confocal epifluorescence microscope
Maxiflox Cristália Produtos Químicos Farmacêuticos Ltda MS-1.0298.0489 Ciprofloxacin 3.5 mg/g
MEB-9400K Nihon Kohden Corporation System for electroretinogram recording
monoclonal IgG1 mouse anti-Brn3a MilliporeSigma MAB-1585 Brn3a primary antibody solution
Neuropack Manager v08.33 Nihon Kohden Corporation Software for electroretinogram signal processing
Optomotry CerebralMechanics System for optomotor response analysis
Osmium tetroxide Electron Microscopy Sciences 19100 Used for electron microscopy tissue preparation (step 5)
Potassium ferrocyanide Electron Microscopy Sciences 20150 Used for electron microscopy tissue preparation (step 5)
Reference and ground electrodes for electroretinography Chalgren Enterprises 110-63 Stainless steel needles 0.4 mm × 37 mm
Sodium cacodylate buffer Electron Microscopy Sciences 12300 Used for electron microscopy tissue preparation (step 5)
Ster MD União Química Farmacêutica Nacional S/A MS-1.0497.1287 Prednisolone acetate 0.12%
Terolac Cristália Produtos Químicos Farmacêuticos Ltda MS-1.0497.1286 Ketorolac trometamol 0.5%
Terramicina Laboratórios Pfizer Ltda MS-1.0216.0024 Oxytetracycline hydrochloride 30 mg/g + polymyxin B 10,000 U/g
Tono-Pen XL Reichert Technologies 230635 Digital applanation handheld tonometer
TO-PRO-3 Thermo Fisher Scientific T3605 Far red-fluorescent nuclear counterstain; emission at 661 nm
Triton X-100 Sigma-Aldrich 9036-19-5 Non-ionic surfactant
Uranyl acetate Electron Microscopy Sciences 22400 Used for electron microscopy tissue preparation (step 5)
Xilazin Syntec do Brasil Ltda 7899 Xylazine hydrochloride 2%
Carl Zeiss Stereo microscope for surgery and retinal dissection

References

  1. Weinreb, R. N., Aung, T., Medeiros, F. A. The Pathophysiology and Treatment of Glaucoma A Review. JAMA. 311 (8), 1901-1911 (2014).
  2. Tham, Y. C., et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 121 (11), 2081-2090 (2014).
  3. Quaranta, L., et al. Quality of Life in Glaucoma: A Review of the Literature. Advances in Therapy. 33 (6), 959-981 (2016).
  4. Heijl, A., et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Archives of Ophthalmology. 120 (10), 1268-1279 (2002).
  5. Susanna, R., De Moraes, C. G., Cioffi, G. A., Ritch, R. Why Do People (Still) Go Blind from Glaucoma. Translational Vision Science & Technology. 4 (2), 1 (2015).
  6. Fujikawa, K., et al. VAV2 and VAV3 as candidate disease genes for spontaneous glaucoma in mice and humans. PLoS One. 5 (2), 9050 (2010).
  7. Mao, M., Hedberg-Buenz, A., Koehn, D., John, S. W., Anderson, M. G. Anterior segment dysgenesis and early-onset glaucoma in nee mice with mutation of Sh3pxd2b. Investigative Ophthalmology & Visual Science. 52 (5), 2679-2688 (2011).
  8. John, S. W., et al. Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Investigative Ophthalmology & Visual Science. 39 (6), 951-962 (1998).
  9. Aihara, M., Lindsey, J. D., Weinreb, R. N. Ocular hypertension in mice with a targeted type I collagen mutation. Investigative Ophthalmology & Visual Science. 44 (4), 1581-1585 (2003).
  10. Chou, T. H., Tomarev, S., Porciatti, V. Transgenic mice expressing mutated Tyr437His human myocilin develop progressive loss of retinal ganglion cell electrical responsiveness and axonopathy with normal iop. Investigative Ophthalmology & Visual Science. 55 (9), 5602-5609 (2014).
  11. vander Zypen, E. Experimental morphological study on structure and function of the filtration angel of the rat eye. Ophthalmologica. 174 (5), 285-298 (1977).
  12. Aihara, M., Lindsey, J. D., Weinreb, R. N. Aqueous humor dynamics in mice. Investigative Ophthalmology & Visual Science. 44 (12), 5168-5173 (2003).
  13. Morrison, J. C., Fraunfelder, F. W., Milne, S. T., Moore, C. G. Limbal microvasculature of the rat eye. Investigative Ophthalmology & Visual Science. 36 (3), 751-756 (1995).
  14. Morrison, J. C., et al. A rat model of chronic pressure-induced optic nerve damage. Experimental Eye Research. 64 (1), 85-96 (1997).
  15. Sappington, R. M., Carlson, B. J., Crish, S. D., Calkins, D. J. The microbead occlusion model: A paradigm for induced ocular hypertension in rats and mice. Investigative Ophthalmology & Visual Science. 51 (1), 207-216 (2010).
  16. Zhu, M. D., Cai, F. Y. Development of experimental chronic intraocular hypertension in the rabbit. Australian and New Zealand Journal of Ophthalmology. 20 (3), 225-234 (1992).
  17. Shareef, S. R., Garcia-Valenzuela, E., Salierno, A., Walsh, J., Sharma, S. C. Chronic ocular hypertension following episcleral venous occlusion in rats. Experimental Eye Research. 61 (3), 379-382 (1995).
  18. Levkovitch-Verbin, H., et al. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Investigative Ophthalmology & Visual Science. 43 (2), 402-410 (2002).
  19. Zhao, D., et al. Characterization of the Circumlimbal Suture Model of Chronic IOP Elevation in Mice and Assessment of Changes in Gene Expression of Stretch Sensitive Channels. Frontiers in Neuroscience. 11, (2017).
  20. Biswas, S., Wan, K. H. Review of rodent hypertensive glaucoma models. Acta Ophthalmologica. 97 (3), 331-340 (2019).
  21. Pitha, I., et al. Sustained Dorzolamide Release Prevents Axonal and Retinal Ganglion Cell Loss in a Rat Model of IOP-Glaucoma. Translational Vision Science & Technology. 7 (2), 13 (2018).
  22. Grozdanic, S. D., et al. Temporary elevation of the intraocular pressure by cauterization of vortex and episcleral veins in rats causes functional deficits in the retina and optic nerve. Experimental Eye Research. 77 (1), 27-33 (2003).
  23. Lani, R., et al. A subacute model of glaucoma based on limbal plexus cautery in pigmented rats. Scientific Reports. 9 (1), 16286 (2019).
  24. vander Merwe, E. L., Kidson, S. H. The three-dimensional organisation of the post-trabecular aqueous outflow pathway and limbal vasculature in the mouse. Experimental Eye Research. 125, 226-235 (2014).
  25. Prusky, G. T., Alam, N. M., Beekman, S., Douglas, R. M. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Investigative Ophthalmology & Visual Science. 45 (12), 4611-4616 (2004).
  26. Sasovetz, D. Ketamine hydrochloride: an effective general anesthetic for use in electroretinography. Annals of Ophthalmology. 10 (11), 1510-1514 (1978).
  27. Stabio, M. E., et al. A novel map of the mouse eye for orienting retinal topography in anatomical space. The Journal of Comparative Neurology. 526 (11), 1749-1759 (2018).
  28. Blanco, R., et al. A Chronic Ocular-Hypertensive Rat Model induced by Injection of the Sclerosant Agent Polidocanol in the Aqueous Humor Outflow Pathway. International Journal of Molecular Sciences. 20 (13), 3209 (2019).
  29. Paranhos, A., Prata, J. A., de Mello, P. A., da Silva, F. A. Post-Trabecular Glaucomas with Elevated Episcleral Venous Pressure. Mechanisms of the Glaucomas. , 139-157 (2008).
  30. Ou, Y., Jo, R. E., Ullian, E. M., Wong, R. O. L., Della Santina, L. Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension. The Journal of Neuroscience: The Official Journal of The Society for Neuroscience. 36 (35), 9240-9252 (2016).

Play Video

Cite This Article
Lani-Louzada, R., Abreu, C. A., Araújo, V. G., Dias, M. S., Petrs-Silva, H., Linden, R. Full-Circle Cauterization of Limbal Vascular Plexus for Surgically Induced Glaucoma in Rodents. J. Vis. Exp. (180), e63442, doi:10.3791/63442 (2022).

View Video