Il tasso di consumo di ossigeno (OCR) è un proxy comune per la funzione mitocondriale e può essere utilizzato per studiare diversi modelli di malattia. Abbiamo sviluppato un nuovo metodo utilizzando un analizzatore Seahorse XF per misurare direttamente l’OCR in fette striatal acute di topi adulti che è più fisiologicamente rilevante rispetto ad altri metodi.
I mitocondri svolgono un ruolo importante nella produzione cellulare di ATP, nella regolazione delle specie reattive dell’ossigeno e nel controllo della concentrazionedi Ca 2 +. La disfunzione mitocondriale è stata implicata nella patogenesi di più malattie neurodegenerative, tra cui il morbo di Parkinson (PD), la malattia di Huntington e il morbo di Alzheimer. Per studiare il ruolo dei mitocondri nei modelli di queste malattie, possiamo misurare la respirazione mitocondriale attraverso il tasso di consumo di ossigeno (OCR) come proxy per la funzione mitocondriale. L’OCR è già stato misurato con successo in colture cellulari e mitocondri isolati. Tuttavia, queste tecniche sono meno fisiologicamente rilevanti rispetto alla misurazione dell’OCR in fette di cervello acute. Per superare questa limitazione, gli autori hanno sviluppato un nuovo metodo utilizzando un analizzatore Seahorse XF per misurare direttamente l’OCR in fette striatali acute di topi adulti. La tecnica è ottimizzata con particolare attenzione allo striato, un’area del cervello coinvolta nel PD e nella malattia di Huntington. L’analizzatore esegue un test di cellule vive utilizzando una piastra a 24 pozzetti, che consente la misurazione cinetica simultanea di 24 campioni. Il metodo utilizza pezzi circolari di fette di cervello striatale come campioni. Dimostriamo l’efficacia di questa tecnica identificando un OCR basale inferiore in fette striatali di un modello murino di PD. Questo metodo sarà di ampio interesse per i ricercatori che lavorano nel campo del PD e della Malattia di Huntington.
La disfunzione mitocondriale è stata implicata in diverse malattie neurologiche, tra cui il morbo di Parkinson (PD), la malattia di Huntington e il morbo di Alzheimer 1,2,3. I modelli PD come i topi e i ratti PINK1 knockout (KO) mostrano una funzione mitocondriale compromessa 4,5,6,7,8,9,10,11. I mitocondri isolati dallo striato (STR) o dall’intero cervello del topo PINK1 KO invecchiato presentano difetti nel complesso I 7,10,12,13. La misurazione diretta del tasso di consumo di ossigeno (OCR) è uno dei metodi più comuni per valutare la funzione mitocondriale poiché l’OCR è accoppiato con la produzione di ATP, la funzione principale dei mitocondri14. Pertanto, la misurazione dell’OCR in modelli di malattia o campioni / tessuti derivati dal paziente può aiutare a indagare su come la disfunzione mitocondriale porta alla malattia.
Attualmente, ci sono diversi modi per misurare l’OCR mitocondriale, tra cui l’elettrodo clark e altri elettrodi O2, il colorante fluorescente O2 e l’analizzatore di flusso extracellulare 15,16,17,18,19. Come vantaggio, i metodi basati su elettrodi O2 consentono di aggiungere facilmente vari substrati. Tuttavia, sono insufficienti per misurare contemporaneamente più campioni. Rispetto ai tradizionali metodi basati su elettrodi O2, l’analizzatore di flusso extracellulare, uno strumento comunemente usato per l’OCR in colture cellulari o mitocondri purificati, offre una produttività migliorata 15,18,20. Tuttavia, tutti questi metodi sono solitamente applicati per misurare l’OCR in mitocondri isolati o colture cellulari 6,16,17,19,20,21. L’isolamento dei mitocondri provoca danni involontari e i mitocondri estratti o le colture cellulari sono meno fisiologicamente rilevanti delle fette di cervello intatte22. Anche quando i microelettrodi sono usati nelle fette, sono meno sensibili e più difficili da usare rispetto alle cellule coltivate23.
Per affrontare queste sfide, abbiamo sviluppato un metodo utilizzando l’analizzatore di flusso extracellulare XF24, che consente l’analisi di più parametri metabolici da fette di cervello striatale acuto di topi24. Questa tecnica fornisce una quantificazione diretta continua della respirazione mitocondriale tramite l’OCR. In breve, piccole sezioni di fette di cervello striatale vengono collocate in pozzetti della piastra isolotta e l’analizzatore utilizza biosensori a base di ossigeno e protoni fluorescenti per misurare l’OCR e il tasso di acidificazione extracellulare, rispettivamente 17,21,25.
Una delle caratteristiche uniche dell’analizzatore sono i quattro pozzetti di iniezione, che consentono la misurazione continua dell’OCR mentre iniettano sequenzialmente fino a quattro composti o reagenti; ciò consente la misurazione di diversi parametri di respirazione cellulare, come l’OCR mitocondriale basale, l’OCR legato all’ATP e l’OCR mitocondriale massimale. I composti iniettati durante le misurazioni per il protocollo qui mostrato erano concentrazioni di lavoro di 10 mM di piruvato nel primo pozzo di soluzione (porta A), 20 μM di oligomicina nel secondo pozzo di soluzione (porta B), 10 μM di carbonil cianuro 4-(trifluorometossi) fenilidrazone (FCCP) nel terzo pozzo (porta C) e 20 μM di antimicina A nel quarto pozzo (porta D), basato su Fried et al.25. Va notato che queste concentrazioni erano concentrazioni di lavoro e soluzioni stock di 10x, 11x, 12x e 13x sono state iniettate nelle porte della soluzione da A a D, rispettivamente. Lo scopo dell’utilizzo di ciascuna soluzione era il seguente: 1) Il piruvato era necessario poiché, senza di esso, l’aggiunta di FCCP avrebbe una diminuzione della risposta OCR causata da una limitazione dei substrati disponibili; 2) L’oligomicina inibisce l’ATP sintasi e consente la misurazione della respirazione legata all’ATP; 3) FCCP sgancia l’ossidazione da fosforilazione e permette la misura della massima capacità mitocondriale; 4) L’antimicina A inibisce il complesso III nella catena di trasporto degli elettroni e, quindi, permette la misurazione dell’OCR non legato ai mitocondri.
La concentrazione di oligomicina utilizzata è stata determinata in base ai seguenti motivi: 1) La dose raccomandata di oligomicina per la maggior parte dei tipi di cellule (mitocondri isolati o colture cellulari) è di 1,5 μM. Per esperienza, di solito 3x-10x della dose di cellule dissociate viene utilizzata per gli esperimenti di fetta poiché potrebbe esserci un gradiente e la penetrazione della soluzione nelle fette richiede tempo. Pertanto, la concentrazione dovrebbe essere compresa tra 5 μM e 25 μM. 2) Una concentrazione di 20 μM è stata selezionata sulla base di Fried et al.25. Non sono state provate concentrazioni più elevate a causa della tossicità non specifica dell’oligomicina. 3) Nel rapporto di Underwood et al.26, gli autori hanno fatto un esperimento di titolazione per l’oligomicina e hanno scoperto che le dosi a 6,25, 12,5, 25 e 50 μg / mL hanno provocato un’inibizione simile. La maggiore concentrazione di oligomicina (50 μg/mL) non ha inibito di più, ma ha avuto una maggiore varianza. 4) Nella nostra osservazione, il fattore determinante sembra essere la capacità penetrante dell’oligomicina. È difficile per l’oligomicina penetrare nel tessuto, ed è per questo che ci vogliono almeno 7-8 cicli per raggiungere il plateau, la risposta massima. Finché raggiunge l’altopiano, si presume che l’inibizione sia massima.
Una sfida tecnica chiave per adattare l’analizzatore di flusso extracellulare per misurare l’OCR nelle fette striatali è prevenire l’ipossia tissutale. Poiché il tampone non è stato ossigenato durante l’intera durata delle misurazioni (circa 4 ore), l’ipossia era un problema centrale. Ciò è particolarmente vero per i campioni di tessuto più spesso, dove l’ossigeno non può diffondersi in tutti i campioni. Per superare questo problema, le fette sono state sezionate a 150 μm di spessore, in modo che l’ossigeno ambientale potesse penetrare nel mezzo delle fette di cervello. Inoltre, 4 mg/mL di albumina sierica bovina (BSA) sono stati aggiunti al tampone del liquido cerebrospinale artificiale pre-ossigenato (ACSF), che ha facilitato la determinazione dell’OCR massimale, come precedentemente suggerito23. Abbiamo esaminato se le cellule erano vive. In primo luogo, Hoechst 33258 (10 μM) e ioduro di propidio (10 μM) sono stati utilizzati per esaminare se le cellule erano sane in queste condizioni. Abbiamo quindi esaminato se i neuroni spinosi medi fossero funzionalmente sani usando la registrazione patch-clamp. Abbiamo inoltre valutato se i terminali della dopamina (DA) nelle fette striatali fossero funzionalmente sani misurando il rilascio di DA utilizzando la voltammetria a scansione rapida. I risultati hanno mostrato che le fette striatali che non erano ossigenate (gruppo ACSF / BSA) erano sane come il gruppo di controllo ossigenato24.
Abbiamo quindi testato diverse combinazioni di spessore della fetta e dimensione del punzone per determinare le condizioni ottimali della fetta striatale per il test di respirazione del flusso. Per l’analisi OCR sono state utilizzate fette striatali dorsali con diversi spessori (150 μm e 200 μm) e punzonature (1,0 mm, 1,5 mm e 2,0 mm di diametro). Le fette striatali spesse 150 μm con una dimensione del punzone di 1,5 mm di diametro avevano la massima efficienza di accoppiamento e OCR entro un intervallo ottimale per l’analizzatore24.
Il metodo che abbiamo sviluppato ha permesso di utilizzare un analizzatore XF per misurare l’OCR in fette striatali di topi adulti in un arco di tempo di 4 ore. Questo metodo fornisce un nuovo modo per misurare la bioenergetica cellulare in pugni asportati da strutture cerebrali anatomicamente definite. Poiché i campioni di tessuto analizzati sono piuttosto piccoli, è possibile studiare i parametri metabolici di specifiche aree cerebrali coinvolte in una malattia. Inoltre, l’uso di fette acute imita più da vicino l’am…
The authors have nothing to disclose.
Ringraziamo Wangchen Tsering e Pamela Walter per la lettura critica e l’editing di questo manoscritto. Questo lavoro è stato supportato dal National Institute of Neurological Disorders and Stroke (NINDS) (NS054773 a C.J. L. e NS098393 a H.Z.) e dal Dipartimento di Neuroscienze della Thomas Jefferson University (Startup Funds to H.Z.).
Accumet AB150 pH benchtop meter | Thermo Fisher Scientific | 13-636-AB150 | To measure pH |
Antimycin A from streptomyces sp. | SIGMA | A8674 | To inhibit complex III of the mitochondria |
Bovine Serum Albumin (BSA) | SIGMA | A6003 | To make modified artificial cerebrospinal fluid (BSA-ACSF) |
Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) | SIGMA | C2920 | To uncouple mitochondrial respiration |
D-Glucose | SIGMA | G8270 | To make artificial cerebrospinal fluid (ACSF) |
DMSO | SIGMA | D8418 | To dissovle compounds |
HEPES | SIGMA | H3375 | To make artificial cerebrospinal fluid (ACSF) |
Humidified non-CO2 incubator | Fisher Scientific | 11-683-230D | To hydrate plates at 37 °C |
Oligomycin from Streptomyces diastatochromogenes | SIGMA | O4876 | To inhibit mitochondrial ATP synthase |
Parafilm | SIGMA-ALDRICH | sealing film | |
Rotenone | Tocris | 3616 | To inhibit complex I of the mitochondria |
Seahorse XF Calibrant Solution 500 mL | Seahorse Bioscience | 103681-100 | Solution for seahorse calibration |
Seahorse XF Extracellular Flux Analyzer | Seahorse Bioscience | Equipment used to analyze oxygen consumption rate, old generation | |
Seahorse XFe24 Extracellular Flux Analyzer | Seahorse Bioscience | Equipment used to analyze oxygen consumption rate, new generation | |
Seahorse XF24 FluxPaks | Seahorse Bioscience | 101174-100 | Package of flux analyzer sensor cartridges, tissue culture plates, capture screens, calibrant solution and calibration plates; assay kit. |
Sodium pyruvate | SIGMA | P2256 | To prevent any substrate-limiting constraints of substrate supply |
Stainless steel biopsy punches | Miltex | Device used to punch slices | |
Sterile cell culture dish, 35 x 10 mm | Eppendrof | 0030700102 | Used for slice punch |
Vibratome | Leica | VT1200 | To slice brain tissue |
Water bath | Thermo Scientific Precision | 282-115 | To heat buffer and solutions |