Qui, viene presentato un test di ricostituzione in vitro basato sulla microscopia TIRF per quantificare e confrontare contemporaneamente la dinamica di due popolazioni di microtubuli. Viene descritto un metodo per visualizzare simultaneamente l’attività collettiva di più proteine associate a microtubuli su fasci di microtubuli reticolati e singoli microtubuli.
I microtubuli sono polimeri di eterodimeri αβ-tubulina che si organizzano in strutture distinte nelle cellule. Le architetture e le reti basate su microtubuli spesso contengono sottoinsiemi di array di microtubuli che differiscono nelle loro proprietà dinamiche. Ad esempio, nelle cellule in divisione, fasci stabili di microtubuli reticolati coesistono in prossimità di microtubuli dinamici non reticolati. Gli studi di ricostituzione in vitro basati sulla microscopia TIRF consentono la visualizzazione simultanea della dinamica di questi diversi array di microtubuli. In questo test, una camera di imaging è assemblata con microtubuli immobilizzati in superficie, che sono presenti come singoli filamenti o organizzati in fasci reticolati. L’introduzione di tubulina, nucleotidi e regolatori proteici consente la visualizzazione diretta delle proteine associate e delle proprietà dinamiche di microtubuli singoli e reticolati. Inoltre, i cambiamenti che si verificano quando i singoli microtubuli dinamici si organizzano in fasci possono essere monitorati in tempo reale. Il metodo qui descritto consente una valutazione sistematica dell’attività e della localizzazione delle singole proteine, nonché degli effetti sinergici dei regolatori proteici su due diversi sottoinsiemi di microtubuli in condizioni sperimentali identiche, fornendo così intuizioni meccanicistiche inaccessibili con altri metodi.
I microtubuli sono biopolimeri che formano scaffold strutturali essenziali per molteplici processi cellulari, che vanno dal trasporto intracellulare e dal posizionamento degli organelli alla divisione cellulare e all’allungamento. Per eseguire queste diverse funzioni, i singoli microtubuli sono organizzati in array di dimensioni micron, come fusi mitotici, assonemi ciliari, fasci neuronali, array interfase e array corticali vegetali. Un motivo architettonico onnipresente trovato in queste strutture è un fascio di microtubuli reticolati lungo le loro lunghezze1. Una caratteristica intrigante di diverse strutture a base di microtubuli è la coesistenza di microtubuli raggruppati e singoli microtubuli non reticolati in stretta vicinanza spaziale. Queste sottopopolazioni di microtubuli possono mostrare dinamiche di polimerizzazione nettamente diverse l’una dall’altra, come necessario per il loro corretto funzionamento2,3,4,5. Ad esempio, all’interno del fuso mitotico, fasci reticolati stabili e singoli microtubuli dinamici sono presenti all’interno di una regione su scala micron al centro cellulare6. Studiare come vengono specificate le proprietà dinamiche delle popolazioni di microtubuli coesistenti è, quindi, fondamentale per comprendere l’assemblaggio e la funzione delle strutture basate sui microtubuli.
I microtubuli sono polimeri dinamici che si alternano tra le fasi di polimerizzazione e depolimerizzazione, passando da una fase all’altra in eventi noti come catastrofe e salvataggio7. La dinamica dei microtubuli cellulari è regolata da una miriade di Microtubule Associated Proteins (MAP) che modulano i tassi di polimerizzazione e depolimerizzazione dei microtubuli e le frequenze degli eventi catastrofici e di soccorso. È difficile studiare l’attività delle MAP su array spazialmente prossimali nelle cellule, a causa dei limiti della risoluzione spaziale nella microscopia ottica, specialmente nelle regioni ad alta densità di microtubuli. Inoltre, la presenza di più MAP nella stessa regione cellulare ostacola le interpretazioni degli studi biologici cellulari. I saggi di ricostituzione in vitro, eseguiti in combinazione con la microscopia TIRF (Total Internal Reflection Fluorescence), aggirano le sfide dell’esame dei meccanismi con cui specifici sottoinsiemi di MAP regolano la dinamica degli array di microtubuli cellulari prossimali. Qui, la dinamica dei microtubuli assemblati in vitro viene esaminata in presenza di una o più MAP ricombinanti in condizioni controllate8,9,10. Tuttavia, i saggi di ricostituzione convenzionali vengono tipicamente eseguiti su singoli microtubuli o su un tipo di array, precludendo la visualizzazione di popolazioni coesistenti.
Qui presentiamo saggi di ricostituzione in vitro che consentono la visualizzazione simultanea di due popolazioni di microtubuli nelle stesse condizioni di soluzione11. Descriviamo un metodo per visualizzare simultaneamente l’attività collettiva di più MAP su singoli microtubuli e su fasci di microtubuli reticolati dalla proteina PRC1 associata al fuso mitotico. La proteina PRC1 si lega preferenzialmente alla sovrapposizione tra microtubuli antiparalleli, reticolandoli9. In breve, questo protocollo consiste nelle seguenti fasi: (i) preparazione di soluzioni stock e reagenti, (ii) pulizia e trattamento superficiale dei coverslip utilizzati per creare la camera di imaging per esperimenti di microscopia, (iii) preparazione di “semi” di microtubuli stabili da cui viene avviata la polimerizzazione durante l’esperimento, (iv) specifica delle impostazioni del microscopio TIRF per visualizzare la dinamica dei microtubuli, (v) immobilizzazione dei semi di microtubuli e generazione di fasci di microtubuli reticolati nella camera di imaging e (vi) visualizzazione della dinamica dei microtubuli nella camera di imaging attraverso la microscopia TIRF, previa aggiunta di tubulina solubile, MAP e nucleotidi. Questi saggi consentono la valutazione qualitativa e l’esame quantitativo della localizzazione MAP e del loro effetto sulla dinamica di due popolazioni di microtubuli. Inoltre, facilitano la valutazione degli effetti sinergici di più MAP su queste popolazioni di microtubuli, in una vasta gamma di condizioni sperimentali.
L’esperimento qui descritto espande significativamente la portata e la complessità dei saggi convenzionali di ricostituzione dei microtubuli, che vengono tradizionalmente eseguiti su singoli microtubuli o su un tipo di array. L’attuale test fornisce un metodo per quantificare e confrontare simultaneamente l’attività map regolatoria su due popolazioni, vale a dire singoli microtubuli e fasci reticolati. Inoltre, questo test consente l’esame di due tipi di fasci: quelli che sono preformati da semi stabili prima dell’iniz…
The authors have nothing to disclose.
Questo lavoro è stato sostenuto da una sovvenzione del NIH (n. 1DP2GM126894-01) e da fondi del Pew Charitable Trusts e della Smith Family Foundation a R.S. Gli autori ringraziano il Dr. Shuo Jiang per il suo contributo allo sviluppo e all’ottimizzazione dei protocolli.
(±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox) | Sigma Aldrich | 238813 | |
1,4-piperazinediethanesulfonic acid (PIPES) | Sigma Aldrich | P6757 | |
18×18 mm #1.5 coverslips | Electron Microscopy Sciences | 63787 | |
2-Mercaptoethanol (BME) | Sigma Aldrich | M-6250 | |
24×60 mm #1.5 coverslips | Electron Microscopy Sciences | 63793 | |
405/488/560/647 nm Laser Quad Band | Chroma | TRF89901-NK | |
Acetone | Sigma Aldrich | 320110 | |
Adenosine 5'-triphosphate disodium salt hydrate (ATP) | Sigma Aldrich | A7699-5G | |
Avidin, NeutrAvidin® Biotin-binding Protein (Molecular Probes®) | Thermo Fischer Scientific | A2666 | |
Bath sonicator: Branson 2800 Cleaner | Branson | CPX2800H | |
Beckman Coulter Polycarbonate Thickwall Tubes, 11 x 34 mm | Beckman-Coulter | 343778 | |
Beckman Coulter Polycarbonate Thickwall Tubes, 8 x 34 mm | Beckman-Coulter | 343776 | |
Biotin-PEG-SVA, MW 5,000 | Laysan Bio | #Biotin-PEG-SVA-5000 | |
Bovine Serum Albumin (BSA) | Sigma Aldrich | 2905 | |
Catalase | Sigma Aldrich | C40 | |
Corning LSE Mini Microcentrifuge, AC100-240V | Corning | 6670 | |
Delicate Task Wipes | Kimtech | 34120 | |
Dithiothreitol (DTT) | GoldBio | DTT10 | |
Emission filter | Chroma | ET610/75m | |
Ethanol (200-proof) | Decon Labs | 2705 | |
Ethylene glycol tetraacetic acid (EGTA) | Sigma Aldrich | 3777 | |
Glucose Oxidase | Sigma Aldrich | G2133 | |
GMPCPP | Jena Bioscience | NU-405 | |
Guanosine 5'-triphosphate sodium salt hydrate (GTP) | Sigma Aldrich | G8877 | |
Hellmanex III detergent | Sigma Aldrich | Z805939 | |
Immersion oil, Type A | Fisher Scientific | 77010 | |
Kappa-casein | Sigma Aldrich | C0406 | |
Lanolin | Fisher Scientific | S25376 | |
Lens Cleaning Tissue | ThorLabs | MC-5 | |
Magnesium Chloride (MgCl2) | Sigma Aldrich | M9272 | |
Methylcellulose | Sigma Aldrich | M0512 | |
Microfuge 16 Benchtop Centrifuge | Beckman-Coulter | A46474 | |
Microscope Slides, Diamond White Glass, 25 x 75mm, 90° Ground Edges, WHITE Frosted | Globe Scientific | 1380-50W | |
mPEG-Succinimidyl Valerate, MW 5,000 | Laysan Bio | #NH2-PEG-VA-5K | |
Optima™ Max-XP Tabletop Ultracentrifuge | Beckman-Coulter | 393315 | |
Paraffin | Fisher Scientific | P31-500 | |
PELCO Reverse (self-closing), Fine Tweezers | Ted Pella | 5377-NM | |
Petrolatum, White | Fisher Scientific | 18-605-050 | |
Plasma Cleaner, 115V | Harrick Plasma | PDC-001 | |
Potassium Hydroxide (KOH) | Sigma Aldrich | 221473 | |
Sodium bicarbonate | Sigma Aldrich | S6014 | |
Sucrose | Sigma Aldrich | S7903 | |
Thermal-Lok 1-Position Dry Heat Bath | USA Scientific | 2510-1101 | |
Thermal-Lok Block for 1.5 and 2.0 mL Tubes | USA Scientific | 2520-0000 | |
Thermo Scientific™ Pierce™ Bond-Breaker™ TCEP Solution, Neutral pH; 500mM | Thermo Fischer Scientific | PI-77720 | |
TIRF 100X NA 1.49 Oil Objective | Nikon | CFI Apochromat TIRF 100XC Oil | |
TIRF microscope | Nikon | Eclipse Ti | |
TLA 120.1 rotor | Beckman-Coulter | 362224 | |
TLA 120.2 rotor | Beckman-Coulter | 357656 | |
Tubulin protein (>99% pure): porcine brain | Cytoskeleton | T240 | |
Tubulin Protein (Biotin): Porcine Brain | Cytoskeleton | T333P | |
Tubulin protein (fluorescent HiLyte 647): porcine brain | Cytoskeleton | TL670M | |
Tubulin protein (X-rhodamine): bovine brain | Cytoskeleton | TL620M | |
VECTABOND® Reagent, Tissue Section Adhesion | Vector Biolabs | SP-1800-7 | |
VWR® Personal-Sized Incubator, 120V, 50/60Hz, 0.6A | VWR | 97025-630 |