Summary

Visualisation simultanée de la dynamique des microtubules réticulés et simples in vitro par microscopie TIRF

Published: February 18, 2022
doi:

Summary

Ici, un essai de reconstitution in vitro basé sur la microscopie TIRF est présenté pour quantifier et comparer simultanément la dynamique de deux populations de microtubules. Une méthode est décrite pour visualiser simultanément l’activité collective de plusieurs protéines associées aux microtubules sur des faisceaux de microtubules réticulés et des microtubules simples.

Abstract

Les microtubules sont des polymères d’hétérodimères d’αβ-tubuline qui s’organisent en structures distinctes dans les cellules. Les architectures et les réseaux basés sur des microtubules contiennent souvent des sous-ensembles de réseaux de microtubules qui diffèrent par leurs propriétés dynamiques. Par exemple, dans les cellules en division, des faisceaux stables de microtubules réticulés coexistent à proximité de microtubules dynamiques non réticulés. Les études de reconstitution in vitro basées sur la microscopie TIRF permettent la visualisation simultanée de la dynamique de ces différents réseaux de microtubules. Dans ce test, une chambre d’imagerie est assemblée avec des microtubules immobilisés en surface, qui sont soit présents sous forme de filaments simples, soit organisés en faisceaux réticulés. L’introduction de la tubuline, des nucléotides et des régulateurs de protéines permet une visualisation directe des protéines associées et des propriétés dynamiques des microtubules simples et réticulés. De plus, les changements qui se produisent lorsque des microtubules uniques dynamiques s’organisent en faisceaux peuvent être surveillés en temps réel. La méthode décrite ici permet une évaluation systématique de l’activité et de la localisation de protéines individuelles, ainsi que des effets synergiques des régulateurs de protéines sur deux sous-ensembles de microtubules différents dans des conditions expérimentales identiques, fournissant ainsi des informations mécanistes inaccessibles par d’autres méthodes.

Introduction

Les microtubules sont des biopolymères qui forment des échafaudages structurels essentiels à de multiples processus cellulaires, allant du transport intracellulaire et du positionnement des organites à la division cellulaire et à l’allongement. Pour exécuter ces diverses fonctions, les microtubules individuels sont organisés en réseaux de la taille d’un micron, tels que les fuseaux mitotiques, les axonèmes ciliaires, les faisceaux neuronaux, les réseaux interphasiques et les réseaux corticaux végétaux. Un motif architectural omniprésent que l’on retrouve dans ces structures est un faisceau de microtubules réticulés sur toute leur longueur1. Une caractéristique intrigante de plusieurs structures à base de microtubules est la coexistence de microtubules groupés et de microtubules simples non réticulés à proximité spatiale étroite. Ces sous-populations de microtubules peuvent présenter une dynamique de polymérisation très différente les unes des autres, selon les besoins pour leur bon fonctionnement2,3,4,5. Par exemple, dans le fuseau mitotique, des faisceaux réticulés stables et des microtubules simples dynamiques sont présents dans une région à l’échelle du micron au centre cellulaire6. L’étude de la façon dont les propriétés dynamiques des populations de microtubules coexistantes sont spécifiées est donc essentielle pour comprendre l’assemblage et la fonction des structures à base de microtubules.

Les microtubules sont des polymères dynamiques qui alternent entre les phases de polymérisation et de dépolymérisation, passant d’une phase à l’autre dans des événements connus sous le nom de catastrophe et de sauvetage7. La dynamique des microtubules cellulaires est régulée par une myriade de protéines associées aux microtubules (MAP) qui modulent les taux de polymérisation et de dépolymérisation des microtubules et les fréquences des catastrophes et des événements de sauvetage. Il est difficile d’étudier l’activité des MAP sur les réseaux proximaux spatiaux dans les cellules, en raison des limites de la résolution spatiale en microscopie optique, en particulier dans les régions à haute densité de microtubules. De plus, la présence de plusieurs MAP dans la même région cellulaire entrave l’interprétation des études biologiques cellulaires. Les essais de reconstitution in vitro, effectués conjointement avec la microscopie à fluorescence par réflexion interne totale (TIRF), contournent les défis liés à l’examen des mécanismes par lesquels des sous-ensembles spécifiques de MAP régulent la dynamique des réseaux de microtubules cellulaires proximaux. Ici, la dynamique des microtubules assemblés in vitro est examinée en présence d’un ou plusieurs MAP recombinants dans des conditions contrôlées8,9,10. Cependant, les essais de reconstitution conventionnels sont généralement effectués sur des microtubules simples ou sur un type de réseau, empêchant la visualisation de populations coexistantes.

Nous présentons ici des essais de reconstitution in vitro qui permettent la visualisation simultanée de deux populations de microtubules dans les mêmes conditions de solution11. Nous décrivons une méthode permettant de visualiser simultanément l’activité collective de plusieurs MAP sur des microtubules simples et sur des faisceaux de microtubules réticulés par la protéine mitotique associée au fuseau PRC1. La protéine PRC1 se lie préférentiellement au chevauchement entre les microtubules anti-parallèles, les réticulant9. En bref, ce protocole comprend les étapes suivantes: (i) préparation de solutions mères et de réactifs, (ii) nettoyage et traitement de surface des couvercles utilisés pour créer la chambre d’imagerie pour les expériences de microscopie, (iii) préparation de « graines » de microtubules stables à partir desquelles la polymérisation est initiée au cours de l’expérience, (iv) spécification des paramètres du microscope TIRF pour visualiser la dynamique des microtubules, (v) immobilisation des graines de microtubules et génération de faisceaux de microtubules réticulés dans la chambre d’imagerie, et (vi) visualisation de la dynamique des microtubules dans la chambre d’imagerie par microscopie TIRF, après addition de tubuline soluble, de MAP et de nucléotides. Ces essais permettent l’évaluation qualitative et l’examen quantitatif de la localisation de la MAP et de son effet sur la dynamique de deux populations de microtubules. En outre, ils facilitent l’évaluation des effets synergiques de plusieurs MAP sur ces populations de microtubules, dans un large éventail de conditions expérimentales.

Protocol

1. Préparez les réactifs Préparer les tampons et les réactifs comme indiqué dans les tableaux 1 et 2. Pendant l’expérience, conservez toutes les solutions sur la glace, sauf indication contraire. Solution Composants Durée de stockage recommandée …

Representative Results

L’expérience décrite ci-dessus a été réalisée à l’aide de microtubules biotinylés marqués au fluorophore de 647 nm, de microtubules non biotinylés marqués au fluorophore de 560 nm et d’un mélange de tubuline soluble marqué au fluorophore de 560 nm. Les microtubules ont été réticulés par la protéine réticulée PRC1 (marquée GFP). Après la génération de faisceaux immobilisés en surface et de microtubules simples (étape 5.11), la chambre d’imagerie a été montée sur un objectif d’huile T…

Discussion

L’expérience décrite ici élargit considérablement la portée et la complexité des essais conventionnels de reconstitution de microtubules, qui sont traditionnellement effectués sur des microtubules simples ou sur un type de réseau. Le test actuel fournit une méthode pour quantifier et comparer simultanément l’activité map régulatrice sur deux populations, à savoir les microtubules simples et les faisceaux réticulés. De plus, ce test permet d’examiner deux types de faisceaux : ceux qui sont préformés…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Ce travail a été soutenu par une subvention du NIH (n° 1DP2GM126894-01) et par des fonds des Pew Charitable Trusts et de la Smith Family Foundation à R.S. Les auteurs remercient le Dr Shuo Jiang pour sa contribution au développement et à l’optimisation des protocoles.

Materials

(±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox) Sigma Aldrich 238813
1,4-piperazinediethanesulfonic acid (PIPES) Sigma Aldrich P6757
18×18 mm #1.5 coverslips  Electron Microscopy Sciences 63787
2-Mercaptoethanol (BME) Sigma Aldrich M-6250
24×60 mm #1.5 coverslips Electron Microscopy Sciences 63793
405/488/560/647 nm Laser Quad Band  Chroma TRF89901-NK
Acetone Sigma Aldrich 320110
Adenosine 5'-triphosphate disodium salt hydrate (ATP) Sigma Aldrich A7699-5G
Avidin, NeutrAvidin® Biotin-binding Protein (Molecular Probes®) Thermo Fischer Scientific A2666
Bath sonicator: Branson 2800 Cleaner Branson CPX2800H
Beckman Coulter Polycarbonate Thickwall Tubes, 11 x 34 mm Beckman-Coulter  343778
Beckman Coulter Polycarbonate Thickwall Tubes, 8 x 34 mm Beckman-Coulter  343776
Biotin-PEG-SVA, MW 5,000 Laysan Bio #Biotin-PEG-SVA-5000
Bovine Serum Albumin (BSA) Sigma Aldrich 2905
Catalase Sigma Aldrich C40
Corning LSE Mini Microcentrifuge, AC100-240V Corning 6670
Delicate Task Wipes Kimtech 34120
Dithiothreitol (DTT) GoldBio DTT10
Emission filter Chroma ET610/75m
Ethanol (200-proof) Decon Labs 2705
Ethylene glycol tetraacetic acid (EGTA) Sigma Aldrich 3777
Glucose Oxidase Sigma Aldrich G2133
GMPCPP Jena Bioscience  NU-405
Guanosine 5'-triphosphate sodium salt hydrate (GTP) Sigma Aldrich G8877
Hellmanex III detergent  Sigma Aldrich Z805939
Immersion oil, Type A Fisher Scientific 77010
Kappa-casein Sigma Aldrich C0406
Lanolin Fisher Scientific S25376
Lens Cleaning Tissue ThorLabs MC-5
Magnesium Chloride (MgCl2) Sigma Aldrich M9272
Methylcellulose Sigma Aldrich M0512
Microfuge 16 Benchtop Centrifuge Beckman-Coulter  A46474
Microscope Slides, Diamond White Glass, 25 x 75mm, 90° Ground Edges, WHITE Frosted Globe Scientific 1380-50W
mPEG-Succinimidyl Valerate, MW 5,000  Laysan Bio #NH2-PEG-VA-5K
Optima™ Max-XP Tabletop Ultracentrifuge Beckman-Coulter  393315
Paraffin Fisher Scientific P31-500
PELCO Reverse (self-closing), Fine Tweezers Ted Pella 5377-NM
Petrolatum, White Fisher Scientific 18-605-050
Plasma Cleaner, 115V Harrick Plasma PDC-001
Potassium Hydroxide (KOH) Sigma Aldrich 221473
Sodium bicarbonate Sigma Aldrich S6014
Sucrose Sigma Aldrich S7903
Thermal-Lok 1-Position Dry Heat Bath USA Scientific 2510-1101
Thermal-Lok Block for 1.5 and 2.0 mL Tubes USA Scientific 2520-0000
Thermo Scientific™ Pierce™ Bond-Breaker™ TCEP Solution, Neutral pH; 500mM Thermo Fischer Scientific PI-77720
TIRF 100X NA 1.49 Oil Objective Nikon CFI Apochromat TIRF 100XC Oil
TIRF microscope Nikon Eclipse Ti
TLA 120.1 rotor Beckman-Coulter  362224
TLA 120.2 rotor Beckman-Coulter  357656
Tubulin protein (>99% pure): porcine brain Cytoskeleton T240
Tubulin Protein (Biotin): Porcine Brain Cytoskeleton T333P
Tubulin protein (fluorescent HiLyte 647): porcine brain Cytoskeleton TL670M
Tubulin protein (X-rhodamine): bovine brain Cytoskeleton TL620M
VECTABOND® Reagent, Tissue Section Adhesion Vector Biolabs SP-1800-7
VWR® Personal-Sized Incubator, 120V, 50/60Hz, 0.6A VWR 97025-630

References

  1. Subramanian, R., Kapoor, T. M. Building complexity: insights into self-organized assembly of microtubule-based architectures. Developmental Cell. 23 (5), 874-885 (2012).
  2. Baas, P. W., Rao, A. N., Matamoros, A. J., Leo, L. Stability properties of neuronal microtubules. Cytoskeleton (Hoboken). 73 (9), 442-460 (2016).
  3. Bitan, A., Rosenbaum, I., Abdu, U. Stable and dynamic microtubules coordinately determine and maintain Drosophila bristle shape. Development. 139 (11), 1987-1996 (2012).
  4. Foe, V. E., von Dassow, G. Stable and dynamic microtubules coordinately shape the myosin activation zone during cytokinetic furrow formation. The Journal of Cell Biology. 183 (3), 457-470 (2008).
  5. Pous, C., et al. Functional specialization of stable and dynamic microtubules in protein traffic in WIF-B cells. The Journal of Cell Biology. 142 (1), 153-165 (1998).
  6. Uehara, R., Goshima, G. Functional central spindle assembly requires de novo microtubule generation in the interchromosomal region during anaphase. The Journal of Cell Biology. 191 (2), 259-267 (2010).
  7. Mitchison, T., Kirschner, M. Dynamic instability of microtubule growth. Nature. 312 (5991), 237-242 (1984).
  8. Bieling, P., et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature. 450 (7172), 1100-1105 (2007).
  9. Bieling, P., Telley, I. A., Surrey, T. A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell. 142 (3), 420-432 (2010).
  10. Shimamoto, Y., Forth, S., Kapoor, T. M. Measuring pushing and braking forces generated by ensembles of Kinesin-5 crosslinking two microtubules. Developmental Cell. 34 (6), 669-681 (2015).
  11. Mani, N., Jiang, S., Neary, A. E., Wijeratne, S. S., Subramanian, R. Differential regulation of single microtubules and bundles by a three-protein module. Nature Chemical Biology. 17 (9), 964-974 (2021).
  12. Hyman, A. A., Salser, S., Drechsel, D., Unwin, N., Mitchison, T. J. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Molecular Biology of the Cell. 3 (10), 1155-1167 (1992).
  13. Subramanian, R., et al. Insights into antiparallel microtubule crosslinking by PRC1, a conserved nonmotor microtubule binding protein. Cell. 142 (3), 433-443 (2010).
  14. Rasnik, I., McKinney, S. A., Ha, T. Nonblinking and long-lasting single-molecule fluorescence imaging. Nature Methods. 3 (11), 891-893 (2006).
  15. Wijeratne, S., Subramanian, R. Geometry of antiparallel microtubule bundles regulates relative sliding and stalling by PRC1 and Kif4A. eLife. 7, 32595 (2018).
  16. Mani, N., Wijeratne, S. S., Subramanian, R. Micron-scale geometrical features of microtubules as regulators of microtubule organization. eLife. 10, 63880 (2021).
  17. Freal, A., et al. Feedback-driven assembly of the axon initial segment. Neuron. 104 (2), 305-321 (2019).
  18. Ledbetter, M., Porter, K. A "microtubule" in plant cell fine structure. The Journal of Cell Biology. 19 (1), 239-250 (1963).
  19. Wijeratne, S. S., Marchan, M. F., Tresback, J. S., Subramanian, R. Atomic force microscopy reveals distinct protofilament-scale structural dynamics in depolymerizing microtubule arrays. Proceedings of the National Academy of Sciences of the United States of America. , 119 (2022).

Play Video

Cite This Article
Mani, N., Marchan, M. F., Subramanian, R. Simultaneous Visualization of the Dynamics of Crosslinked and Single Microtubules In Vitro by TIRF Microscopy. J. Vis. Exp. (180), e63377, doi:10.3791/63377 (2022).

View Video