Mikrotubuli, bei denen es sich um Tubulin-Polymere handelt, spielen eine entscheidende Rolle als Bestandteil des Zytoskeletts in eukaryotischen Zellen und sind für ihre dynamische Instabilität bekannt. In dieser Studie wurde eine Methode zur Fraktionierung von Mikrotubuli entwickelt, um sie in stabile Mikrotubuli, labile Mikrotubuli und freies Tubulin zu trennen, um die Stabilität von Mikrotubuli in verschiedenen Mausgeweben zu bewerten.
Mikrotubuli, die aus α/β-Tubulin-Dimeren bestehen, sind ein entscheidender Bestandteil des Zytoskeletts in eukaryotischen Zellen. Diese röhrenförmigen Polymere weisen eine dynamische Instabilität auf, da Tubulin-Heterodimer-Untereinheiten einer repetitiven Polymerisation und Depolymerisation unterzogen werden. Die präzise Kontrolle der Stabilität und Dynamik der Mikrotubuli, die durch posttranslationale Tubulinmodifikationen und Mikrotubuli-assoziierte Proteine erreicht wird, ist für verschiedene zelluläre Funktionen unerlässlich. Funktionsstörungen in Mikrotubuli sind stark an der Pathogenese beteiligt, einschließlich neurodegenerativer Erkrankungen. Die laufende Forschung konzentriert sich auf auf Mikrotubuli-gerichtete Therapeutika, die die Stabilität modulieren und potenzielle Behandlungsoptionen für diese Krankheiten und Krebsarten bieten. Daher ist das Verständnis des dynamischen Zustands von Mikrotubuli entscheidend für die Beurteilung des Krankheitsverlaufs und der therapeutischen Effekte.
Traditionell wurde die Dynamik von Mikrotubuli in vitro oder in kultivierten Zellen durch grobe Fraktionierung oder Immunoassay untersucht, wobei Antikörper verwendet wurden, die auf posttranslationale Modifikationen von Tubulin abzielen. Die genaue Analyse des Tubulinstatus in Geweben mit solchen Verfahren stellt jedoch eine Herausforderung dar. In dieser Studie haben wir eine einfache und innovative Methode zur Fraktionierung von Mikrotubuli entwickelt, um stabile Mikrotubuli, labile Mikrotubuli und freies Tubulin in Mausgeweben zu trennen.
Das Verfahren beinhaltete die Homogenisierung von präpariertem Mausgewebe in einem Mikrotubuli-stabilisierenden Puffer in einem Volumenverhältnis von 19:1. Die Homogenate wurden dann durch einen zweistufigen Ultrazentrifugationsprozess nach anfänglicher langsamer Zentrifugation (2.400 × g) fraktioniert, um Ablagerungen zu entfernen. Der erste Ultrazentrifugationsschritt (100.000 × g) fiel stabile Mikrotubuli aus, während der resultierende Überstand einem zweiten Ultrazentrifugationsschritt (500.000 × g) unterzogen wurde, um labile Mikrotubuli und lösliche Tubulindimere zu fraktionieren. Mit dieser Methode wurden die Anteile von Tubulin, die stabile oder labile Mikrotubuli im Mäusegehirn bilden, bestimmt. Darüber hinaus wurden deutliche Gewebevariationen in der Mikrotubuli-Stabilität beobachtet, die mit der proliferativen Kapazität der konstituierenden Zellen korrelierten. Diese Ergebnisse unterstreichen das signifikante Potenzial dieser neuartigen Methode zur Analyse der Mikrotubuli-Stabilität unter physiologischen und pathologischen Bedingungen.
Mikrotubuli (MTs) sind längliche röhrenförmige Strukturen, die aus Protofilamenten bestehen, die aus α/β-Tubulin-Heterodimer-Untereinheiten bestehen. Sie spielen eine wesentliche Rolle bei verschiedenen zellulären Prozessen wie Zellteilung, Motilität, Formerhaltung und intrazellulärem Transport und sind damit integrale Bestandteile des eukaryotischen Zytoskeletts1. Das Minus-Ende von MTs, bei dem die α-Tubulin-Untereinheit exponiert ist, ist relativ stabil, während das Plus-Ende, bei dem die β-Tubulin-Untereinheit exponiert ist, eine dynamische Depolymerisation und Polymerisation erfährt2. Dieser kontinuierliche Zyklus der Tubulin-Dimer-Addition und -Dissoziation am Plus-Ende, der als dynamische Instabilität bezeichnet wird, führt zu einem sich wiederholenden Prozess der Rettung und Katastrophe3. MTs weisen fokale Domänen mit lokalisierten Variationen der dynamischen Instabilität auf, einschließlich stabiler und labiler Domänen4.
Die präzise Kontrolle der dynamischen Instabilität von MTs ist entscheidend für zahlreiche zelluläre Funktionen, insbesondere in Neuronen, die durch komplizierte Morphologien gekennzeichnet sind. Die Anpassungsfähigkeit und Haltbarkeit von MTs spielen eine entscheidende Rolle für die Entwicklung und das reibungslose Funktionieren von Nervenzellen 5,6,7. Es wurde festgestellt, dass die dynamische Instabilität von MTs mit verschiedenen posttranslationalen Modifikationen (PTMs) von Tubulin verbunden ist, wie z. B. Acetylierung, Phosphorylierung, Palmitoylierung, Detyrosinierung, Delta 2, Polyglutaminoxidation und Polyglycylierung. Darüber hinaus dient die Bindung von Mikrotubuli-assoziierten Proteinen (MAPs) als Regulationsmechanismus8. PTMs, mit Ausnahme der Acetylierung, treten überwiegend in der Tubulin-Carboxy-terminalen Region auf, die sich auf der äußeren Oberfläche von MTs befindet. Diese Modifikationen erzeugen unterschiedliche Oberflächenbedingungen auf MTs, beeinflussen deren Wechselwirkung mit MAPs und steuern letztendlich die MT-Stabilität9. Das Vorhandensein eines carboxyterminalen Tyrosinrests in α-Tubulin ist ein Hinweis auf dynamische MTs, die schnell durch den freien Tubulinpool ersetzt werden. Umgekehrt bedeuten die Detyrosinierung des Carboxy-Terminus und die Acetylierung von Lys40 stabile MTs mit reduzierter dynamischer Instabilität 9,10.
Die PTMs von Tubulin wurden in großem Umfang in Experimenten eingesetzt, um die Dynamik und Stabilität von MTs 5,7,11,12,13,14,15 zu bewerten. Zum Beispiel können Tubuline in Zellkulturstudien in zwei Pools unterteilt werden: den freien Tubulin-Pool und den MT-Pool. Dies wird erreicht, indem freies Tubulin durch Zellpermeabilisierung freigesetzt wird, bevor die verbleibenden MTs 15,16,17,18,19 fixiert werden. Biochemische Methoden beinhalten die Verwendung chemischer MT-Stabilisatoren, die MTs vor Katastrophen schützen und die Trennung von MTs und freiem Tubulin durch Zentrifugation ermöglichen20,21,22. Diese Verfahren unterscheiden jedoch nicht zwischen stabilen und weniger stabilen (labilen) MTs, wodurch es unmöglich ist, MTs oder lösliches Tubulin in Geweben wie dem Gehirn zu quantifizieren. Folglich hat sich die Bewertung der MT-Stabilität in Organismen unter physiologischen und pathologischen Bedingungen als schwierig erwiesen. Um diese experimentelle Einschränkung zu adressieren, haben wir eine neuartige Technik zur präzisen Trennung von MTs und freiem Tubulin in Mausgewebe entwickelt23.
Diese einzigartige MT-Fraktionierungsmethode beinhaltet die Homogenisierung von Gewebe unter Bedingungen, die den Tubulinstatus im Gewebe aufrechterhalten, und die zweistufige Zentrifugation zur Trennung stabiler MTs, labiler MTs und freiem Tubulin. Dieses einfache Verfahren kann auf breit angelegte Studien angewendet werden, einschließlich Grundlagenforschung zu MTs und MAPs in lebenden Organismen, physiologische und pathologische Analysen von Gesundheit und Krankheiten, die mit der MT-Stabilität verbunden sind, sowie die Entwicklung von Medikamenten und anderen Therapeutika, die auf MTs abzielen.
Die wichtigste Aufgabe bei der Untersuchung des Status von Tubulin in Gewebe lebender Organismen besteht darin, eine versehentliche MT-Polymerisation oder -Depolymerisation während der Präparation zu verhindern. Die Stabilität von MTs in Proben wird durch Faktoren wie die Konzentration von Taxol in MSB, das Verhältnis der Gewebemenge zum Puffer und die Temperatur während des Prozesses von der Gewebeentnahme bis zur Homogenisierung und Zentrifugation beeinflusst. Daher wurden die Bedingungen in jedem Schritt des Prot…
The authors have nothing to disclose.
Diese Arbeit wurde zum Teil von JST unterstützt, der Einrichtung von Universitätsstipendien zur Schaffung von wissenschaftlich-technologischen Innovationen (A.HT.; JPMJFS2145), JST FRÜHLING (A.HT.; JPMJSP2129), Grant-in-Aid for JSPS Fellows (A.HT.; 23KJ2078), ein Grant-in-Aid for Scientific Research(B) JSPS KAKENHI (22H02946 for TM), ein Grant-in-Aid for Scientific Research on Innovative Areas mit dem Titel “Brain Protein Aging and Dementia Control” von MEXT (TM; 26117004) und von Uehara Research Fellowship von der Uehara Memorial Foundation (TM; 202020027). Die Autoren erklären, dass es keine konkurrierenden finanziellen Interessen gibt.
1.5 ML TUBE CASE OF 500 | Beckman Coulter | 357448 | |
1A2 | Sigma-Aldrich | T9028 | 1:5,000 dilution |
2-(N-morpholino)ethanesulfonic acid (MES) | Nacalai Tesque | 02442-44 | |
300 kDa ultrafiltration spin column | Aproscience | PT-1013 | |
6-11B1 | Sigma-Aldrich | T7451 | 1:5,000 dilution |
AKTA prime plus | Cytiva | ||
anti-mouse IgG | Jackson ImmunoResearch | 115-035-146 | 1:5,000 dilution |
antipain | Peptide Institute Inc. | 4062 | |
aprotinin | Nacalai Tesque | 03346-84 | |
Chemi-Lumi One L | Nacalai Tesque | 07880-54 | |
Corning bottle-top vacuum filter system | Corning | 430758 | 0.22µm 33.2cm² Nitrocellulose membrane |
DIFP | Sigma-Aldrich | 55-91-4 | |
DIGITAL HOMOGENIZER | AS ONE | HOM | |
DM1A | Sigma-Aldrich | T9026 | 1:5,000 dilution |
DTT | Nacalai Tesque | 14128-46 | |
EGTA | Nacalai Tesque | 37346-05 | |
FluoroTrans W 3.3 Meter Roll | Pall Corporation | BSP0161 | |
glycerol | Nacalai Tesque | 17018-25 | |
GTP | Nacalai Tesque | 17450-61 | |
HIGH SPEED REFRIGERATIOED MICRO CENTRIFUGE Kitman | TOMY | ||
HiLoad 16/600 Superdex 200 pg column | Cytiva | 28-9893-35 | |
Image Gauge Software | FUJIFILUM Wako Pure Chemical Corporation | ||
ImmunoStar LD | FUJIFILUM Wako Pure Chemical Corporation | 292-69903 | |
KMX-1 | Millipore | MAB3408 | 1:5,000 dilution |
LAS-4000 luminescent image analyzer | FUJIFILUM Wako Pure Chemical Corporation | ||
leupeptin | Peptide Institute Inc. | 43449-62 | |
MgSO4 | Nacalai Tesque | 21003-75 | |
Na3VO4 | Nacalai Tesque | 32013-92 | |
NaF | Nacalai Tesque | 31420-82 | |
okadaic acid | LC Laboratories | O-2220 | |
OPTIMA MAX-XP | Beckman Coulter | 393315 | |
pepstatin | Nacalai Tesque | 26436-52 | |
PMSF | Nacalai Tesque | 27327-81 | |
Polycarbonate Centrifuge Tubes for TLA120.2 | Beckman Coulter | 343778 | |
Protease inhibitor cocktail (cOmplete, EDTA-free) | Roche | 5056489001 | |
Purified tubulin | Cytoskeleton | T240 | |
QSONICA Q55 | QSonica | Q55 | |
Taxol | LC Laboratories | P-9600 | |
TLA-120.2 rotor | Beckman Coulter | 357656 | |
TLA-55 rotor | Beckman Coulter | 366725 | |
TLCK | Nacalai Tesque | 34219-94 | |
Triton X-100 | Nacalai Tesque | 12967-45 | |
β-glycerophosphate | Sigma-Aldrich | G9422 |