Summary

Messung der Eigenschaften des periodischen Membranskeletts des Axon-Anfangssegments mittels 3D-strukturierter Beleuchtungsmikroskopie (3D-SIM)

Published: February 11, 2022
doi:

Summary

Das vorliegende Protokoll beschreibt eine Methode zur Visualisierung und Messung von Aktinringen und anderen Komponenten des periodischen Membranskeletts des Axon-Anfangssegments unter Verwendung von kultivierten Ratten-Hippocampus-Neuronen und 3D-strukturierter Beleuchtungsmikroskopie (3D-SIM).

Abstract

Das Axon-Anfangssegment (AIS) ist der Ort, an dem Aktionspotentiale ausgehen und bildet einen Transportfilter und eine Diffusionsbarriere, die zur Aufrechterhaltung der neuronalen Polarität beitragen, indem sie somato-dendritische Fracht sortieren. Ein periodisches Membranskelett (MPS), das aus periodischen Aktinringen besteht, bietet ein Gerüst zur Verankerung verschiedener AIS-Proteine, einschließlich Strukturproteinen und verschiedener Ionenkanäle. Obwohl neuere proteomische Ansätze eine beträchtliche Anzahl neuartiger AIS-Komponenten identifiziert haben, fehlen Details über die Struktur des MPS und die Rollen seiner einzelnen Komponenten. Der Abstand zwischen einzelnen Aktinringen im MPS (~ 190 nm) erfordert den Einsatz von hochauflösenden Mikroskopietechniken, um die strukturellen Details des MPS aufzulösen. Dieses Protokoll beschreibt eine Methode zur Verwendung kultivierter Hippocampus-Neuronen von Ratten, um die genaue Lokalisation eines AIS-Proteins im MPS relativ zu submembranösen Aktinringen mittels 3D-strukturierter Beleuchtungsmikroskopie (3D-SIM) zu untersuchen. Darüber hinaus wird ein analytischer Ansatz beschrieben, um die Periodizität einzelner Komponenten und ihre Position relativ zu Aktinringen quantitativ zu beurteilen.

Introduction

Das Axon-Anfangssegment (AIS) ist eine kurze, einzigartig spezialisierte Region des proximalen Axons von Wirbeltierneuronen1. Das AIS umfasst einen Transportfilter und eine Diffusionsbarriere, die für die Aufrechterhaltung der neuronalen Polarität durch Sortierung somato-dendritischer Fracht2,3,4,5,6,7 unerlässlich sind. Darüber hinaus ermöglicht die einzigartige Struktur des AIS, Cluster von spannungsgesteuerten Ionenkanälen unterzubringen, die seine Funktion als Ort der Initiierung von Aktionspotentialen erleichtern8. Den einzigartigen Funktionen des AIS liegt ein hochstabiler Strukturkomplex zugrunde. Die Forschung in den letzten zehn Jahren hat das Vorhandensein eines periodischen Membranskeletts (MPS) gezeigt, das Aktinringe enthält, die durch Spektrin verbunden sind und ein Gerüst für die Verankerung verschiedener AIS-Proteine bieten9,10.

Der Abstand zwischen den Aktinringen im MPS (~190 nm)9,10 liegt unter der Auflösungsgrenze der herkömmlichen Lichtmikroskopie. Frühe Versuche, die Elektronenmikroskopie zur Visualisierung des MPS zu verwenden, waren nicht erfolgreich, da die harten Vorbereitungsverfahren die Struktur des MPS nicht erhalten konnten. Daher haben sich hochauflösende Mikroskopietechniken als von unschätzbarem Wert erwiesen, um einige der strukturellen Details des MPS11 zu erläutern. Das Verständnis des AIS-Strukturkomplexes, der Identität und Funktionen seiner Komponenten und seiner räumlich-zeitlichen Regulation ist jedoch noch unvollständig. Jüngsten proteomischen Studien gelang es, eine beträchtliche Liste von Proteinen zu erstellen, die in der Nähe von Strukturkomponenten des AIS lokalisiert sind12,13. Dennoch fehlen Details zu ihrer Funktion und ihrem genauen Platz im AIS-Komplex. Daher dienen hochauflösende Mikroskopietechniken als wesentliches Werkzeug, um die genauen Positionen dieser Proteine relativ zu anderen MPS-Komponenten zu untersuchen und ihre Funktionen zu untersuchen. Mehrere Lichtmikroskopietechniken können Auflösungen erreichen, die über der Beugungsgrenze des Lichts liegen, einige sind sogar in der Lage, einzelne Moleküle zu lokalisieren. Viele dieser Techniken erfordern jedoch in der Regel spezielle Fluorophore oder Bildgebungspuffer, und die Bildaufnahme ist oft zeitintensiv14.

Die strukturierte 3D-Beleuchtungsmikroskopie (3D-SIM) erfordert aufgrund ihrer Benutzerfreundlichkeit und einfachen Anforderungen an die Probenvorbereitung keine speziellen Reagenzien für die Bildgebung oder Probenvorbereitung, funktioniert gut mit einer Vielzahl von Fluorophoren und Proben, kann problemlos in mehreren Farben implementiert werden und ist in der Lage, Live-Cell-Imaging zu erstellen15. Während die bestmögliche Auflösung der SIM-Karte (~ 120 nm) im Vergleich zu vielen anderen Super-Resolution-Techniken niedrig ist, ist sie für viele Anwendungen ausreichend (z. B. zum Auflösen der Komponenten des MPS in Neuronen). Daher ist es wichtig, die Anforderung für bestimmte Anwendungen zu berücksichtigen, um festzustellen, ob SIM eine geeignete Wahl ist oder ob eine noch höhere Auflösung erforderlich ist. Hier wird ein Protokoll zur Verwendung von kultivierten Hippocampus-Neuronen und 3D-strukturierter Beleuchtungsmikroskopie (3D-SIM) beschrieben, um die Position und Organisation von mutmaßlichen AIS-Proteinen relativ zu Aktinringen im MPS zu untersuchen, wie es in Abouelezz et al.16 implementiert ist.

Protocol

Primäre Hippocampus-Neuronen, die in diesen Experimenten verwendet wurden16, wurden ab dem Embryonaltag 17 Wistar-Rattenembryonen beiderlei Geschlechts gemäß den ethischen Richtlinien der Universität Helsinki und dem finnischen Recht geerntet. 1. Probenvorbereitung Lassen Sie auf High-Fidelity-Glasdeckgläsern die Hippocampus-Neuronen der Ratte 14 Tage lang (14 Tage in vitro) unter spärlichen Kulturbedingungen (~ 5.000-10.000 Zellen / <su…

Representative Results

Unter Verwendung von kultivierten Ratten-Hippocampus-Neuronen und 3D-SIM wird ein Protokoll beschrieben, um Aktinringe und andere Komponenten des MPS im AIS zu visualisieren und zu messen. Rekonstruktionen von Bildstapeln zeigten eine deutliche Periodizität von Aktinringen (Abbildung 2A). In unseren Händen betrug die mittlere Zwischenspitzendistanz der Aktinringe im MPS, visualisiert mit Alexa 488-markiertem Phalloidin, 190,36 ± 1,7 nm (Mittelwert ± SEM). Dies steht im Einklang mit dem z…

Discussion

Das hier beschriebene Protokoll bietet eine Methode zur Visualisierung und Messung von MPS-Proteinen mit der Super-Resolution-Technik. Da Aktinringe und andere MPS-Komponenten eine Periodizität von ~190 nm9,10 aufweisen, können herkömmliche beugungsbegrenzte Bildgebungsansätze die Details des MPS nicht offenbaren. Mehrere Mikroskopie-Setups können beugungsbegrenzte Strukturen in Superauflösung auflösen, und SIM stellt eine robuste und unkomplizierte Option…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dr. Pirta Hotulainen wird für ihre kritischen Kommentare gewürdigt, die für die Vorbereitung dieses Manuskripts von unschätzbarem Wert sind. Dr. Rimante Minkeviciene ist für ihre Hilfe bei der Vorbereitung der neuronalen Kulturen bekannt, die für die ursprünglichen Experimente verwendet wurden. Die gesamte Bildgebung wurde in der Biomedicum Imaging Unit durchgeführt. Diese Arbeit wurde von der Akademie von Finnland (D.M., SA 266351) und dem Doktorandenprogramm Brain & Mind (A.A.) unterstützt.

Materials

24-well plates Corning 3524
4% Paraformaldehyde
Alexa-488 Phalloidin ThermoFisher A12379
Alexa-647 anti-mouse ThermoFisher A31571
Anti-Ankyrin G antibody UC Davis/NIH NeuroMab Facility, Clone 106/36 75-146
Anti-MAP2 antibody Merck Millipore AB5543
B-27 Invitrogen 17504044
Bovine Serum Albumin (BSA) BioWest P6154
Deltavision OMX SR GE Healthcare Life Sciences N/A
Fiji software package ImageJ
GNU Octave GNU
High performance coverslips Marienfeld 117530
Immersion Oil Calculator Cytiva Life Sciences https://tinyurl.com/ImmersionOilCalculator
L-Glutamine VWR ICNA1680149
MATLAB R2020a Mathworks
Neurobasal media Invitrogen 21103049
OMX SR Delta Vision OMX
Primocin InvivoGen ant-pm-1
ProLong Gold mounting media Invitrogen P10144
softWoRx Deconvolution Cytiva Life Sciences
Superfrost Slides Epredia ISO 8037/1
TetraSpeck microspheres 0.1 µm ThermoFisher T7279
Triton-X Sigma X100

References

  1. Leterrier, C. The Axon initial segment, 50 years later: A nexus for neuronal organization and function. Current Topics in Membranes. 77, 185-233 (2016).
  2. Leterrier, C., Dargent, B. No pasaran! Role of the axon initial segment in the regulation of protein transport and the maintenance of axonal identity. Seminars in Cell & Developmental Biology. 27, 44-51 (2014).
  3. Brachet, A., et al. Ankyrin G restricts ion channel diffusion at the axonal initial segment before the establishment of the diffusion barrier. Journal of Cell Biology. 191 (2), 383-395 (2010).
  4. Nakada, C., et al. Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization. Nature Cell Biology. 5 (7), 626-632 (2003).
  5. Song, A. H., et al. A selective filter for cytoplasmic transport at the axon initial segment. Cell. 136 (6), 1148-1160 (2009).
  6. Sun, X., et al. Selective filtering defect at the axon initial segment in Alzheimer’s disease mouse models. Proceedings of the National Academy of Sciences of the United States of America. 111 (39), 14271-14276 (2014).
  7. Winckler, B., Forscher, P., Mellman, I. A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature. 397 (6721), 698-701 (1999).
  8. Kole, M. H., et al. Action potential generation requires a high sodium channel density in the axon initial segment. Nature Neuroscience. 11 (2), 178-186 (2008).
  9. Xu, K., Zhong, G., Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science. 339 (6118), 452-456 (2013).
  10. Leterrier, C., et al. Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold. Cell Reports. 13 (12), 2781-2793 (2015).
  11. Leterrier, C. The axon initial segment: An updated viewpoint. The Journal of Neuroscience. 38 (9), 2135-2145 (2018).
  12. Hamdan, H., et al. Mapping axon initial segment structure and function by multiplexed proximity biotinylation. Nature Communications. 11 (1), 100 (2020).
  13. Zhou, R., et al. Proteomic and functional analyses of the periodic membrane skeleton in neurons. bioRxiv. , (2020).
  14. Valli, J., et al. Seeing beyond the limit: A guide to choosing the right super-resolution microscopy technique. Journal of Biological Chemistry. 297 (1), 100791 (2021).
  15. Wang, T., et al. Radial contractility of actomyosin rings facilitates axonal trafficking and structural stability. Journal of Cell Biology. 219 (5), 201902001 (2020).
  16. Abouelezz, A., Stefen, H., Segerstråle, M., Micinski, D., Minkeviciene, R., Lahti, L., Hardeman, E., Gunning, P., Hoogenraad, C., Taira, T., Fath, T., Hotulainen, P. Tropomyosin Tpm3.1 is required to maintain the structure and function of the axon initial segment. iScience. 23 (5), 101053 (2020).
  17. Muller, M., Monkemoller, V., Hennig, S., Hubner, W., Huser, T. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nature Communications. 7, 10980 (2016).
  18. Ball, G., et al. SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Scientific Reports. 5, 15915 (2015).
  19. Stauffer, W., Sheng, H., Lim, H. N. EzColocalization: An ImageJ plugin for visualizing and measuring colocalization in cells and organisms. Scientific Reports. 8 (1), 15764 (2018).
  20. Dunn, K. W., Kamocka, M. M., McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. American Journal of Physiology-Cell Physiology. 300 (4), 723-742 (2011).
  21. Lahti, L. Data analysis supplement to the research article Abouelezz, Stefen, Segerstråle, Micinski, Minkeviciene, Lahti, Hardeman, Gunning, Hoogenraad, Taira, Fath, & Hotulainen. Tropomyosin Tpm3.1 Is Required to Maintain the Structure and Function of the Axon Initial Segment. , (2021).
  22. Abouelezz, A., Micinski, D., Lipponen, A., Hotulainen, P. Sub-membranous actin rings in the axon initial segment are resistant to the action of latrunculin. Journal of Biological Chemistry. 400 (9), 1141-1146 (2019).

Play Video

Cite This Article
Micinski, D., Lahti, L., Abouelezz, A. Measuring Properties of the Membrane Periodic Skeleton of the Axon Initial Segment using 3D-Structured Illumination Microscopy (3D-SIM). J. Vis. Exp. (180), e63327, doi:10.3791/63327 (2022).

View Video