Summary

体外 使用分析、下拉和伴侣测定表征组蛋白伴侣

Published: December 29, 2021
doi:

Summary

该协议描述了一系列方法,包括分析体积排阻色谱以研究组蛋白伴侣寡聚化和稳定性,下拉测定以揭示组蛋白伴侣 – 组蛋白相互作用,AUC用于分析蛋白质复合物的化学计量,以及组蛋白伴侣测定以在 体外功能表征假定的组蛋白伴侣。

Abstract

组蛋白与DNA结合形成真核染色质。染色质的基本单位是核小体,由组蛋白八聚体组成,由核心组蛋白H2A,H2B,H3和H4的两个拷贝组成,被DNA包裹。八聚体由两个拷贝的H2A/H2B二聚体和一个拷贝的H3/H4四聚体组成。高电荷的核心组蛋白容易与细胞质和细胞核中的几种蛋白质发生非特异性相互作用。组蛋白伴侣形成一类多样化的蛋白质,将组蛋白从细胞质穿梭到细胞核中,并帮助它们沉积到DNA上,从而协助核小体组装过程。一些组蛋白伴侣对 H2A/H2B 或 H3/H4 具有特异性,有些则作为两者的伴侣。该协议描述了如何串联使用体 实验室技术,例如下拉测定,分析体积排阻色谱,分析超离心和组蛋白伴侣测定,以确认给定的蛋白质是否具有组蛋白伴侣的功能。

Introduction

由DNA和组蛋白组成的核小体形成染色质的结构单元并调节几个关键的细胞事件。核小体被动态地重新定位和重塑,使DNA能够被复制、转录和翻译等各种过程所访问12。高度碱性的组蛋白要么倾向于与细胞环境中的酸性蛋白质相互作用,要么发生聚集,从而导致各种细胞缺陷345。一组称为组蛋白伴侣的专用蛋白质有助于组蛋白从细胞质转运到细胞核,并防止异常组蛋白-DNA聚集事件67。从根本上说,大多数组蛋白伴侣以生理离子强度将组蛋白储存并转移到DNA上,从而有助于核小体89的形成。一些组蛋白伴侣对组蛋白低聚物H2A/H2B或H3/H410有明确的偏好。

组蛋白伴侣的特征基于它们组装依赖或独立于DNA合成的核小体的能力11。例如,染色质组装因子-1 (CAF-1) 是依赖性的,而组蛋白调节因子 A (HIRA) 独立于 DNA 合成1213。同样,组蛋白伴侣的核质蛋白家族参与精子染色质脱缩和核小体组装14。核小体组装蛋白(NAP)家族成员在体外促进核小 样结构的形成,并参与细胞质和细胞核之间的组蛋白穿梭15。核质蛋白和NAP家族蛋白都是功能性组蛋白伴侣,但没有任何结构特征。从本质上讲,没有单一的结构特征允许将蛋白质分类为组蛋白伴侣16。使用功能和生物物理测定以及结构研究最适合表征组蛋白伴侣。

这项工作描述了将蛋白质表征为帮助核小体组装的组蛋白伴侣的生物化学和生物物理方法。首先,采用分析体积排阻色谱法分析组蛋白伴侣的寡聚状态和稳定性。接下来,进行下拉测定以确定组蛋白伴侣-组蛋白相互作用的驱动力和竞争性质。然而,由于蛋白质的形状及其复合物会影响它们在色谱柱中的迁移,因此使用分析体积排阻色谱无法准确计算这些相互作用的流体动力学参数。因此,使用分析超速离心,它提供了溶液内大分子特性,包括准确的分子量、相互作用的化学计量和生物分子的形状。过去的研究已广泛使用体外组蛋白伴侣测定来功能表征组蛋白伴侣,例如yScS116 17,DmACF18,ScRTT106p19,HsNPM120组蛋白伴侣测定也用于在功能上表征蛋白质作为组蛋白伴侣。

Protocol

1. 分析体积排阻色谱法阐明组蛋白伴侣的低聚状态和稳定性 组蛋白伴侣寡聚状态分析在4 °C下平衡24 mL分析体积排阻色谱(SEC)柱与1.2柱体积(CV),即28.8 mL脱气SEC缓冲液[20 mM的Tris-HCl(pH 7.5),300 mM NaCl和1 mM的β-巯基乙醇(β-ME)](参见 材料表)。注意:色谱柱类型、缓冲液组成和缓冲液pH值可根据感兴趣的蛋白质进行选择。对于24 mL色谱柱,样品进样?…

Representative Results

对拟 南芥 FKBP53蛋白的重组N端核质结构域进行SEC分析。将洗脱峰体积与标准曲线作图,以确定其低聚状态。SEC分析结果表明,该结构域以五聚体的形式存在于溶液中,分子量约为58 kDa(图1A,B)。此外,结合分析SEC分析核蓝蛋白结构域的热稳定性和化学稳定性。与保持在20 °C的样品相比,在高达90 °C的温度下进行热处理的核蓝蛋白样品的洗脱体积和峰高?…

Discussion

这项工作演示并验证了一套全面的方案,用于推定组蛋白伴侣的生化和生物物理表征。本文使用重组表达和纯化的NAP家族蛋白AtNRP1和AtNRP2以及AtFKBP53的N端核质蛋白结构域来证明方案。同一组实验可以很好地用于描述来自任何生物体的以前未表征的组蛋白伴侣的功能属性。

协议部分的第一部分涉及研究组蛋白伴侣的寡聚状态和稳定性。一些报告表明,组蛋白伴侣在其寡聚状态?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

印度政府科学与工程研究委员会[CRG/2018/000695/PS]和印度政府科学技术部生物技术司[BT/INF/22/SP33046/2019]向Dileep Vasudevan提供的校外赠款,以及布巴内斯瓦尔生命科学研究所的校内支持,都得到了极大的认可。我们感谢Sudeshna Sen女士和Annapurna Sahoo女士在组蛋白制备方面的帮助。与我们的同事钦马伊·莫哈帕特拉博士、玛纳斯·库马尔·贾格德夫先生和谢赫·瑙萨德·侯赛因博士的讨论也得到了认可。

Materials

Acetic acid (glacial) Sigma A6283
Acrylamide MP Biomedicals 814326
Agarose MP Biomedicals 193983
AKTA Pure 25M FPLC Cytiva 29018226 Instrument for protein purification
Ammonium persulfate (APS) Sigma A3678
An-60Ti rotor Beckman Coulter 361964 Rotor for analytical ultracentrifugation
Bovine serum albumin (BSA) Sigma A7030
Chloroform Sigma C2432
Coomassie brilliant blue R 250 Sigma 1.15444
Dialysis tubing (7 kDa cut-off) Thermo Fisher 68700 For dialysing protein samples
Dithiothreitol (DTT) MP Biomedicals 100597
DNA Loading Dye New England Biolabs B7025S
EDTA disodium salt MP Biomedicals 194822
Electronic balance Shimadzu ATX224R
Ethanol Sigma E7023
Ethidium bromide (EtBr) Sigma E8751
Gel Doc System Bio-Rad 12009077 For imaging gels after staining
Horizontal gel electrophoresis apparatus Bio-Rad 1704405 Instrument for agarose gel electrophoresis
Hydrochloric acid (HCl) Sigma 320331
Imidazole MP Biomedicals 102033
Magnesium chloride (MgCl2) Sigma M8266
Micropipettes Eppendorf Z683779 For pipetting of micro-volumes
Mini-PROTEAN electrophoresis system Bio-Rad 1658000 Instrument for SDS-PAGE
N,N-methylene-bis-acrylamide MP Biomedicals 800172
Nano drop Thermo Fisher ND-2000 For measurement of protein and DNA concentrations
Ni-NTA agarose Invitrogen R901-15 Resin beads for pull-down assay
Optima AUC analytical ultracentrifuge Beckman Coulter B86437 Instrument for analytical ultracentrifugation
pH Meter Mettler Toledo MT30130863
Phenol Sigma P4557
Plasmid isolation kit Qiagen 27104
Proteinase K Sigma-Aldrich 1.07393
pUC19 Thermo Fisher SD0061 Plasmid for supercoiling assay
Refrigerated high-speed centrifuge Thermo Fisher 75002402
SDS-PAGE protein marker Bio-Rad 1610317
SEDFIT Free software program for analytical ultracentrifugation data analysis
SEDNTERP Free software program to estimate viscosity and density of buffer and partial specific volume of a protein
SigmaPrep Spin Columns Sigma SC1000 For pull-down assay
Sodium acetate Sigma S2889
Sodium chloride (NaCl) Merck S9888
Sodium dodecyl sulfate (SDS) MP Biomedicals 102918
Superdex 200 Increase 10/300 GL Cytiva 28990944 Column for analytical size-exclusion chromatography
Superdex 75 Increase 10/300 GL Cytiva 29148721 Column for analytical size-exclusion chromatography
TEMED Sigma 1.10732
Topoisomerase I Inspiralis WGT102 Enzyme used in plasmid supercoiling assay
Tris base Merck T1503
Tween-20 Sigma P1379
Urea MP Biomedicals 191450
Water bath Nüve NB 5 For heat treatment of protein samples
β-mercaptoethanol (β-ME) Sigma M6250

References

  1. Hübner, M. R., Eckersley-Maslin, M. A., Spector, D. L. Chromatin organization and transcriptional regulation. Current Opinion in Genetics and Development. 23 (2), 89-95 (2013).
  2. Lai, W. K. M., Pugh, B. F. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nature Reviews Molecular Cell Biology. 18 (9), 548-562 (2017).
  3. Kim, U. J., Han, M., Kayne, P., Grunstein, M. Effects of histone H4 depletion on the cell cycle and transcription of Saccharomyces cerevisiae. EMBO Journal. 7 (7), 2211-2219 (1988).
  4. Prado, F., Aguilera, A. Partial depletion of histone H4 increases homologous recombination-mediated genetic instability. Molecular and Cellular Biology. 25 (4), 1526-1536 (2005).
  5. Meeks-Wagner, D., Hartwell, L. H. Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell. 44 (1), 43-52 (1986).
  6. Groth, A., et al. Human Asf1 regulates the flow of S phase histones during replicational stress. Molecular Cell. 17 (2), 301-311 (2005).
  7. Laskey, R. A., Honda, B. M., Mills, A. D., Finch, J. T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature. 275 (5679), 416-420 (1978).
  8. Das, C., Tyler, J. K., Churchill, M. E. A. The histone shuffle: histone chaperones in an energetic dance. Trends in Biochemical Sciences. 35 (9), 476-489 (2010).
  9. Akey, C. W., Luger, K. Histone chaperones and nucleosome assembly. Current Opinion in Structural Biology. 13 (1), 6-14 (2003).
  10. De Koning, L., Corpet, A., Haber, J. E., Almouzni, G. Histone chaperones: An escort network regulating histone traffic. Nature Structural and Molecular Biology. 14 (11), 997-1007 (2007).
  11. Eitoku, M., Sato, L., Senda, T., Horikoshi, M. Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly. Cellular and Molecular Life Sciences. 65 (3), 414-444 (2008).
  12. Quivy, J. P., Grandi, P., Almouzni, G. Dimerization of the largest subunit of chromatin assembly factor 1: importance in vitro and during Xenopus early development. EMBO Journal. 20 (8), 2015-2027 (2001).
  13. Ray-Gallet, D., et al. HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Molecular Cell. 9 (5), 1091-1100 (2002).
  14. Frehlick, L. J., Eirín-López, J. M., Ausió, J. New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones. Bioessays. 29 (1), 49-59 (2007).
  15. Ito, T., Bulger, M., Kobayashi, R., Kadonaga, J. T. Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays. Molecular and Cellular Biology. 16 (6), 3112-3124 (1996).
  16. Elsässer, S. J., D’Arcy, S. Towards a mechanism for histone chaperones. Biochimica et Biophysica Acta. 1819 (3-4), 211-221 (2013).
  17. Rodríguez-Campos, A., Koop, R., Faraudo, S., Beato, M. Transcriptionally competent chromatin assembled with exogenous histones in a yeast whole cell extract. Nucleic Acids Research. 32 (13), 111 (2004).
  18. Levenstein, M. E., Kadonaga, J. T. Biochemical analysis of chromatin containing recombinant Drosophila core histones. Journal of Biological Chemistry. 277 (10), 8749-8754 (2002).
  19. Huang, S., et al. Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing. Proceedings of the National Academy of Sciences of the United States of America. 102 (38), 13410-13415 (2005).
  20. Swaminathan, V., Kishore, A. H., Febitha, K. K., Kundu, T. K. Human histone chaperone nucleophosmin enhances acetylation-dependent chromatin transcription. Molecular and Cellular Biology. 25 (17), 7534-7545 (2005).
  21. Singh, A. K., Datta, A., Jobichen, C., Luan, S., Vasudevan, D. AtFKBP53: A chimeric histone chaperone with functional nucleoplasmin and PPIase domains. Nucleic Acids Research. 48 (3), 1531-1550 (2020).
  22. Scofield, B. T. K. H. . Protein Electrophoresis. , (2012).
  23. Andrew, S. M., Titus, J. A., Zumstein, L. Dialysis and concentration of protein solutions. Current Protocols in Toxicology, Appendix 3. , 1-5 (2002).
  24. Balbo, A., Zhao, H., Brown, P. H., Schuck, P. Assembly, loading, and alignment of an analytical ultracentrifuge sample cell. Journal of Visualized Experiments. (33), e1530 (2009).
  25. Padavannil, A., Brautigam, C. A., Chook, Y. M. Molecular size analysis of recombinant importin-histone complexes using analytical ultracentrifugation. Bio-protocol. 10 (10), 3625 (2019).
  26. Zhao, H., Brautigam, C. A., Ghirlando, R., Schuck, P. Overview of current methods in sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation. Current Protocols in Protein Science. , (2013).
  27. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modelling. Biophysical Journal. 78 (3), 1606-1619 (2000).
  28. Kumar, A., Kumar Singh, A., Chandrakant Bob de, R., Vasudevan, D. Structural characterization of Arabidopsis thaliana NAP1-related protein 2 (AtNRP2) and comparison with its homolog AtNRP1. Molecules. 24 (12), 2258 (2019).
  29. Liu, W. H., Roemer, S. C., Port, A. M., Churchill, M. E. A. CAF-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA. Nucleic Acids Research. 45 (16), 9809 (2017).
  30. Bowman, A., et al. The histone chaperones Vps75 and Nap1 form ring-like, tetrameric structures in solution. Nucleic Acids Research. 42 (9), 6038-6051 (2014).
  31. Newman, E. R., et al. Large multimeric assemblies of nucleosome assembly protein and histones revealed by small-angle X-ray scattering and electron microscopy. Journal of Biological Chemistry. 287 (32), 26657-26665 (2012).
  32. Edlich-Muth, C., et al. The pentameric nucleoplasmin fold is present in Drosophila FKBP39 and a large number of chromatin-related proteins. Journal of Molecular Biology. 427 (10), 1949-1963 (2015).
  33. Franco, A., et al. Structural insights into the ability of nucleoplasmin to assemble and chaperone histone octamers for DNA deposition. Scientific Reports. 9 (1), 9487 (2019).
  34. Xiao, H., Jackson, V., Lei, M. The FK506-binding protein, Fpr4, is an acidic histone chaperone. FEBS Letters. 580 (18), 4357-4364 (2006).
  35. Graziano, G. Role of hydrophobic effect in the salt-induced dimerization of bovine beta-lactoglobulin at pH 3. Biopolymers. 91 (12), 1182-1188 (2009).
  36. Burgess, R. J., Zhang, Z. Histone chaperones in nucleosome assembly and human disease. Nature Structural and Molecular Biology. 20 (1), 14-22 (2013).
  37. Donham, D. C., Scorgie, J. K., Churchill, M. E. The activity of the histone chaperone yeast Asf1 in the assembly and disassembly of histone H3/H4-DNA complexes. Nucleic Acids Research. 39 (13), 5449-5458 (2011).
  38. Avvakumov, N., Nourani, A., Côté, J. Histone chaperones: Modulators of chromatin marks. Molecular Cell. 41 (5), 502-514 (2011).
  39. Ransom, M., Dennehey, B. K., Tyler, J. K. Chaperoning histones during DNA replication and repair. Cell. 140 (2), 183-195 (2010).
  40. Chu, X., et al. Importance of electrostatic interactions in the association of intrinsically disordered histone chaperone Chz1 and histone H2A.Z-H2B. PLoS Computational Biology. 8 (7), 1002608 (2012).
  41. Heidarsson, P. O., et al. Disordered proteins enable histone chaperoning on the nucleosome. bioRxiv. , (2020).

Play Video

Cite This Article
Bobde, R. C., Saharan, K., Baral, S., Gandhi, S., Samal, A., Sundaram, R., Kumar, A., Singh, A. K., Datta, A., Vasudevan, D. In Vitro Characterization of Histone Chaperones using Analytical, Pull-Down and Chaperoning Assays. J. Vis. Exp. (178), e63218, doi:10.3791/63218 (2021).

View Video