Ilustramos os métodos envolvidos na triagem e identificação dos micróbios produtores biosurfactantes. Também são apresentados métodos de caracterização cromatografia e identificação química dos biosurfactantes, determinando a aplicabilidade industrial do biosurfactante no aprimoramento da recuperação residual do óleo.
Biosurfactantes são compostos ativos na superfície capazes de reduzir a tensão superficial entre duas fases de diferentes polaridades. Os biosurfactantes vêm surgindo como alternativas promissoras aos surfactantes químicos devido à menor toxicidade, alta biodegradabilidade, compatibilidade ambiental e tolerância a condições ambientais extremas. Aqui, ilustramos os métodos utilizados para a triagem de micróbios capazes de produzir biosurfactantes. Os micróbios produtores de biosurfactantes foram identificados usando o colapso da queda, a propagação do óleo e os ensaios do índice de emulsão. A produção biosufactante foi validada determinando a redução da tensão superficial da mídia devido ao crescimento dos membros microbianos. Descrevemos também os métodos envolvidos na caracterização e identificação de biosurfactantes. A cromatografia de camada fina do biosurfactante extraído seguido de coloração diferencial das placas foi realizada para determinar a natureza do biosurfactante. LCMS, 1H NMR e FT-IR foram utilizados para identificar quimicamente o biosurfactante. Ilustramos ainda os métodos para avaliar a aplicação da combinação de biosurfactantes produzidos para melhorar a recuperação residual do óleo em uma coluna simulada de embalagem de areia.
Biosurfactantes são as moléculas anfípáticas de superfície ativa produzidas por microrganismos que têm a capacidade de reduzir a superfície e a tensão interfacial entre duas fases1. Um biosurfactante típico contém uma parte hidrofílica que é geralmente composta de uma moiety de açúcar ou uma cadeia de peptídeos ou aminoácidos hidrofílicos e uma parte hidrofóbica que é composta de uma cadeia de ácidos graxos saturados ou insaturados2. Devido à sua natureza anfípppica, os biosurfactantes se reúnem na interface entre as duas fases e reduzem a tensão interfacial no limite, o que facilita a dispersão de uma fase para a outra 1,3. Vários tipos de biosurfactantes que foram relatados até agora incluem glicolipídios nos quais os carboidratos estão ligados a ácidos alifáticos de cadeia longa ou hidroxia-alifáticos através de ligações éster (por exemplo, rhamnolipids, trehalolipids e sophorolipids), lipopeptides nos quais lipoides são ligados a cadeias de polipeptídeos (por exemplo, surfactina e lichenysina), e biosurfactantes poliméricas que são geralmente compostos de complexos de proteínas polissacarídeos (por exemplo, emulsano, liposano, alasan e lipomannan)4. Outros tipos de biosurfactantes produzidos pelos microrganismos incluem ácidos graxos, fosfolipídios, lipídios neutros e biosurfactantesde partículas 5. A classe mais estudada de biosurfactídeos é a glicoslipids e entre eles a maioria dos estudos foram relatados sobre rhamnolipids6. Os rhamnolipids contêm uma ou duas moléculas de rhamnose (que formam a parte hidrofílica) ligadas a uma ou duas moléculas de ácido graxo de cadeia longa (geralmente ácido hidroxi-decanoico). Rhamnolipids são glicolipídios primários relatados primeiro de Pseudomonas aeruginosa7.
Os biosurfactantes têm ganhado cada vez mais foco em comparação com suas contrapartes químicas devido a várias propriedades únicas e distintas que oferecem8. Estes incluem maior especificidade, menor toxicidade, maior diversidade, facilidade de preparação, maior biodegradabilidade, melhor espuma, compatibilidade ambiental e atividade em condições extremas9. A diversidade estrutural dos biosurfactantes (Figura S1) é outra vantagem que lhes dá uma vantagem sobre as contrapartes químicas10. Eles são geralmente mais eficazes e eficientes em concentrações mais baixas, pois sua concentração crítica de micelas (CMC) é geralmente várias vezes menor do que os surfactantes químicos11. Eles têm sido relatados como altamente termostáveis (até 100 °C) e podem tolerar maior pH (até 9) e altas concentrações de sal (até 50 g/L)12 , assim, oferecem várias vantagens em processos industriais, que requerem exposição a condições extremas13. A biodegradabilidade e a menor toxicidade as tornam adequadas para aplicações ambientais, como a bioremediação. Devido às vantagens que oferecem, eles têm recebido maior atenção em várias indústrias como alimentos, agrícolas, detergentes, cosméticos e indústria petrolífera11. Os biosurfactantes também ganharam muita atenção na remediação do óleo para a remoção de contaminantes de petróleo e poluentes tóxicos14.
Aqui relatamos a produção, caracterização e aplicação de biosurfactantes produzidos por Rhodococcus sp. IITD102, Lysinibacillus sp. IITD104 e Paenibacillus sp. IITD108. As etapas envolvidas na triagem, caracterização e aplicação de uma combinação de biosurfactantes para maior recuperação do óleo estão descritas na Figura 1.
Figura 1: Um método para maior recuperação do óleo usando uma combinação de Biosurfactantes. O fluxo de trabalho stepwise é mostrado. O trabalho foi realizado em quatro etapas. Primeiro, as cepas microbianas foram cultivadas e rastreadas para a produção de biosurfactantes por vários ensaios, que incluíram ensaio de colapso de queda, ensaio de espalhamento de óleo, ensaio de índice de emulsão e medição de tensão superficial. Em seguida, os biosurfactantes foram extraídos do caldo livre de células e sua natureza foi identificada por meio de cromatografia de camada fina e foram ainda identificadas usando LCMS, NMR e FT-IR. Na etapa seguinte, os biosurfactantes extraídos foram misturados e o potencial da mistura resultante para maior recuperação do óleo foi determinado utilizando-se a técnica da coluna de blocos de areia. Clique aqui para ver uma versão maior desta figura.
A triagem dessas cepas microbianas para produzir biosurfactantes foi feita pelo colapso da queda, propagação do óleo, ensaio do índice de emulsão e determinação de redução da tensão superficial do meio livre de células devido ao crescimento dos micróbios. Os biosurfactantes foram extraídos, caracterizados e quimicamente identificados por LCMS, 1H NMR e FT-IR. Finalmente, foi preparada uma mistura de biosurfactantes produzidos por esses micróbios e utilizada para recuperar o óleo residual em uma coluna simulada de embalagem de areia.
O presente estudo ilustra apenas os métodos envolvidos na triagem, identificação, caracterização estrutural e aplicação da combinação biosurfactante no aprimoramento da recuperação residual do óleo. Não fornece uma caracterização funcional detalhada dos biosurfactantes produzidos pelas cepas microbianas15,16. Vários experimentos como determinação crítica de micela, análise termogravimétrica, capacidade de wettability superficial e biodegradabilidade são realizados para caracterização funcional detalhada de qualquer biosurfactante. Mas como este artigo é um artigo de métodos, o foco é a triagem, identificação, caracterização estrutural e aplicação da combinação biosurfactante no aprimoramento da recuperação residual do óleo; esses experimentos não foram incluídos neste estudo.
Os biosurfactantes são um dos mais versáteis grupos de componentes biologicamente ativos que estão se tornando alternativas atraentes para surfactantes químicos. Eles têm uma ampla gama de aplicações em inúmeras indústrias, como detergentes, tintas, cosméticos, alimentos, produtos farmacêuticos, agricultura, petróleo e tratamento de água devido à sua melhor capacidade de lintibilidade, menor CMC, estrutura diversificada e simpatia ambiental18. Isso levou a um maior interesse em desco…
The authors have nothing to disclose.
Os autores gostariam de agradecer ao Departamento de Biotecnologia, Governo da Índia, pelo apoio financeiro.
1 ml pipette | Eppendorf, Germany | G54412G | |
1H NMR | Bruker Avance AV-III type spectrometer,USA | ||
20 ul pipette | Thermo scientific, USA | H69820 | |
Autoclave | JAISBO, India | Ser no 5923 | Jain Scientific |
Blue flame burner | Rocker scientific, Taiwan | dragon 200 | |
Butanol | GLR inovations, India | GLR09.022930 | |
C18 column | Agilent Technologies, USA | 770995-902 | |
Centrifuge | Eppendorf, Germany | 5810R | |
Chloroform | Merck, India | 1.94506.2521 | |
Chloroform-d | SRL, India | 57034 | |
Falcon tubes | Tarsons, India | 546041 | Radiation sterilized polypropylene |
FT-IR | Thermo Fisher Scientific, USA | Nicolet iS50 | |
Fume hood | Khera, India | 47408 | Customied |
glacial acetic acid | Merck, India | 1.93002 | |
Glass beads | Merck, India | 104014 | |
Glass slides | Polar industrial Corporation, USA | Blue Star | 75 mm * 25 mm |
Glass wool | Merk, India | 104086 | |
Hydrochloric acid | Merck, India | 1003170510 | |
Incubator | Thermo Scientific, USA | MaxQ600 | Shaking incubator |
Incubator | Khera, India | Sunbim | |
Iodine resublimed | Merck, India | 231-442-4 | resublimed Granules |
K12 –Kruss tensiometer | Kruss Scientific, Germany | K100 | |
Laminar air flow cabnet | Thermo Scientific, China | 1300 Series A2 | |
LCMS | Agilent Technologies, USA | 1260 Infinity II | |
Luria Broth | HIMEDIA, India | M575-500G | Powder |
Methanol | Merck, India | 107018 | |
Ninhydrin | Titan Biotech Limited, India | 1608 | |
p- anisaldehyde | Sigma, USA | 204-602-6 | |
Petri plate | Tarsons, India | 460090-90 MM | Radiation sterilized polypropylene |
Saponin | Merck, India | 232-462-6 | |
Sodium chloride | Merck, India | 231-598-3 | |
Test tubes | Borosil, India | 9800U06 | Glass tubes |
TLC plates | Merck, India | 1055540007 | |
Vortex | GeNei, India | 2006114318 | |
Water Bath | Julabo, India | SW21C |