Мы сообщаем о гидротермальном синтезе ферритовых кластеров марганца (MFC) в одном горшке, который предлагает независимый контроль над размерами и составом материала. Магнитная сепарация обеспечивает быструю очистку, в то время как функционализация поверхности с использованием сульфированных полимеров гарантирует, что материалы не агрегируются в биологически значимой среде. Полученные продукты хорошо позиционируются для биомедицинских применений.
Марганцевые ферритовые кластеры (MFC) представляют собой сферические сборки от десятков до сотен первичных нанокристаллов, магнитные свойства которых ценны в различных приложениях. Здесь описано, как сформировать эти материалы в гидротермальном процессе, позволяющем самостоятельно контролировать размер кластера продуктов (от 30 до 120 нм) и содержание марганца в полученном материале. Такие параметры, как общее количество воды, добавляемой в спиртовую реакционную среду, и отношение марганца к предшественнику железа, являются важными факторами в достижении нескольких типов наноразмерных продуктов MFC. Метод быстрой очистки использует магнитную сепарацию для восстановления материалов, что делает производство граммов магнитных наноматериалов довольно эффективным. Мы преодолеваем проблему агрегации магнитных наноматериалов, применяя высокозаряженные сульфонатные полимеры к поверхности этих наноматериалов, давая коллоидно стабильные MFC, которые остаются неагрегирующими даже в средах с высоким содержанием соли. Эти неагрегирующие, однородные и перестраиваемые материалы являются отличными перспективными материалами для биомедицинских и экологических применений.
Включение марганца в качестве легирующего вещества в решетку оксида железа может при соответствующих условиях увеличить намагниченность материала при высоких полях прикладывания по сравнению с чистыми оксидами железа. В результате наночастицы марганцевого феррита (MnxFe3-xO4) являются очень желательными магнитными наноматериалами из-за их высокой намагниченности насыщения, сильной реакции на внешние поля и низкой цитотоксичности1,2,3,4,5. Как однодоменные нанокристаллы, так и кластеры этих нанокристаллов, называемых многодоменными частицами, были исследованы в различных биомедицинских приложениях, включая доставку лекарств, магнитную гипертермию для лечения рака и магнитно-резонансную томографию (МРТ)6,7,8. Например, группа Hyeon в 2017 году использовала однодоменные наночастицы феррита марганца в качестве катализатора Фентона для индуцирования гипоксии рака и использовала T2contrast материала для отслеживания МРТ9. В свете этих и других положительных исследований ферритовых материалов удивительно, что существует мало демонстраций in vivo по сравнению с чистыми наноматериалами оксида железа (Fe3O4) и нет зарегистрированных применений у людей9,10.
Одной из огромных проблем, с которыми приходится сталкиваться при переводе особенностей ферритовых наноматериалов в клинику, является создание однородных, неагрегирующих, наноразмерных кластеров11,12,13,14. В то время как традиционные синтетические подходы к монодоменным нанокристаллам хорошо развиты, мультидоменные кластеры типа интереса к этой работе нелегко получить единообразным и контролируемым образом15,16. Кроме того, ферритовая композиция обычно не является стехиометрической и не просто связана с начальной концентрацией предшественников, и это может еще больше затемнить систематическую структурно-функциональную характеристику этих материалов9,12,13,17. Здесь мы решаем эти проблемы, демонстрируя синтетический подход, который дает независимый контроль как над размером кластера, так и над составом наноматериалов марганцевого феррита.
Эта работа также предоставляет средства для преодоления плохой коллоидной стабильности ферритовых наноматериалов18,19,20. Магнитные наночастицы, как правило, склонны к агрегации из-за сильного притяжения частиц-частиц; Ферриты больше страдают от этой проблемы, поскольку их большая чистая намагниченность усиливает агрегацию частиц. В соответствующих биологических средах эти материалы дают достаточно большие агрегаты, которые материалы быстро собирают, тем самым ограничивая их пути воздействия на животных или людей20,21,22. Hilt et al. обнаружили еще одно последствие агрегации частиц-частиц в своем исследовании магнитотермического нагрева и деградации красителя23. При несколько более высоких концентрациях частиц или увеличенном времени воздействия на поле эффективность материалов снижалась по мере агрегирования материалов с течением времени и уменьшения площадей поверхности активных частиц. Эти и другие приложения выиграли бы от кластерных поверхностей, предназначенных для обеспечения стерических барьеров, исключающих взаимодействия частиц с частицами24,25.
Здесь мы сообщаем о синтетическом подходе к синтезу ферритовых кластеров марганца (MFC) с контролируемыми размерами и составом. Эти многодоменные частицы состоят из сборки первичных нанокристаллов феррита марганца, которые жестко агрегированы; тесная ассоциация первичных нанокристаллов усиливает их магнитные свойства и обеспечивает общий размер кластера, 50-300 нм, хорошо соответствующий оптимальным размерам для наномедицины. Изменяя количество воды и предшественника хлорида марганца, мы можем самостоятельно контролировать общий диаметр и состав. Метод использует простые и эффективные гидротермальные реакции с одним горшком, которые позволяют часто экспериментировать и оптимизировать материал. Эти МФУ могут быть легко очищены в концентрированный раствор продукта, который дополнительно модифицируется сульфированными полимерами, которые придают коллоидную стабильность. Их настраиваемость, однородность и стабильность фазы раствора имеют большое значение для применения наноматериалов в биомедицинской и экологической инженерии.
Данная работа демонстрирует модифицированный полиольный синтез нанокристаллов марганцевого феррита, сгруппированных вместе в однородные наноразмерные агрегаты29. При этом синтезе хлорид железа(III) и хлорид марганца(II) подвергаются принудительной реакции гидролиза и вос?…
The authors have nothing to disclose.
Эта работа была щедро поддержана Университетом Брауна и Advanced Energy Consortium. Мы с благодарностью благодарим д-ра Цинбо Чжана за его установленный синтетический метод МФУ оксида железа.
0.1 Micron Vaccum Filtration Filter | Thermo Fisher Scientific | NC9902431 | for filtration of aggregated clusters after synthesis and surface coating to achieve a uniform solution |
2-Acrylamido-2-methylpropane sulfonic acid (AMPS, 99%) | Sigma-Aldrich | 282731-250G | reagent used in copolymer to surface coat nanoclusters and functionalize them for biological media |
2,2′-Azobis(2-methylpropionitrile) (AIBN) | Sigma-Aldrich | 441090-100G | reagent used in copolymer making as the free ridical generator |
4-Morpholineethanesulfonic acid, 2-(N-Morpholino)ethanesulfonic acid (MES) | Sigma-Aldrich | M3671-250G | acidic buffer used to stabilize nanocluster surface coating process |
Acrylic acid | Sigma-Aldrich | 147230-100G | reagent used in copolymer to surface coat nanoclusters and functionalize them for biological media; anhydrous, contains 200 ppm MEHQ as inhibitor, 99% |
Analytical Balance | Avantor | VWR-205AC | used to weigh out solid chemical reagents for use in synthesis and dilution |
Digital Sonifier and Probe | Branson | B450 | used to sonicate nanocluster solution during surface coating to break up aggregates |
Dopamine hydrochloride | Sigma-Aldrich | H8502-25G | used in surface coating for ligand exchange reaction |
Ethylene glycol (anhydrous, 99.8%) | Sigma-Aldrich | 324558-2L | reagent used as solvent in hydrothermal synthesis of nanoclusters |
Glass Vials (20mL) | Premium Vials | B1015 | container for nanocluster solution during washing and surface coating as well as polymer solutions |
Graduated Beaker (100mL) | Corning | 1000-100 | container for mixing of solid and liquid reagents during hydrothermal synthesis (to be transferred into autoclave reactor before oven) |
Handheld Magnet | MSC Industrial Supply, Inc. | 92673904 | 1/2" Long x 1/2" Wide x 1/8" High, 5 Poles, Rectangular Neodymium Magnet low strength magnet used to precipitate nanoclusters from solution (field strength is increased with steel wool when needed) |
Hydrochloric acid (ACS grade, 37%) | Fisher Scientific | 7647-01-0 | for removing leftover nanocluster debris and cleaning autoclave reactors for next use |
Hydrothermal Autoclave Reactor | Toption | TOPT-HP500 | container for finished reagent mixture to withstand high temperature and pressure created by the oven in hydrothermal synthesis |
Iron(III) Chloride Hexahydrate (FeCl3·6H2O, ACS reagent, 97%) | ACS | 236489-500G | reagent used in synthesis of nanoclusters as source of iron (III) that becomes iron (II) in finished nanocluster product (keep dry and weigh out quickly to avoid water contamination) |
Labware Washer Brushes | Fisher Scientific | 13-641-708 | used to wash and clean glassware before synthesis |
Magnetic Stir Plate | Thermo Fisher Scientific | 50093538 | for mixing of solid and liquid reagents during hydrothermal synthesis |
Manganese chloride tetrahydrate (MnCl2·4H2O, 99.0%, crystals, ACS) | Sigma-Aldrich | 1375127-2G | reagent used in synthesis of nanoclusters as source of manganese |
Micropipette (100-1000μL) | Thermo Fisher Scientific | FF-1000 | for transferring liquid reagents such as water and manganese chloride |
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) | Sigma-Aldrich | 25952-53-8 | used in surface coating to assist in ligand exchange of copolymer (keep bulk chemical in freezer and diluted solution in refrigerator) |
N,N-Dimethylformamide (DMF) | Sigma-Aldrich | 227056-2L | reagent used in copolymer making as the solvent |
Polyacrylic acid sodium salt (PAA, Mw~6,000) | PolyScience Inc. | 06567-250 | reagent used in hydrothermal synthesis to initially coat the nanoclusters (eventually replaced in surface coating step) |
Poly(ethylene glycol) methyl ether acrylate | Sigma-Aldrich | 454990-250ML | reagent used in copolymer to surface coat nanoclusters and functionalize them for biological media; average Mn 480, contains 100 ppm BHT as inhibitor, 100 ppm MEHQ as inhibitor |
Reagents Acetone, 4L, ACS Reagent | Cole-Parmer | UX-78920-66 | used as solvent to precipitate nanoclusters during washing |
Single Channel Pipette, Adjustable 1-10 mL | Eppendorf | 3123000080 | for transferring ethylene glycol and other liquids |
Steel Wool | Lowe's | 788470 | used to increase the magnetic field strength in the vial to aid in precipitation of nanoclusters for washing and surface coating |
Stirring Bar | Thomas Scientific | 8608S92 | for mixing of solid and liquid reagents during hydrothermal synthesis |
Table Clamp | Grainger | 29YW53 | for tight sealing of autoclave reactor to withstand high pressure of oven during hyrothermal synthesis |
Urea (ACS reagent, 99.0%) | Sigma-Aldrich | U5128-500G | reagent used in hydrothermal synthesis to create a basic solution |
Vaccum Filtration Bottle Tops | Thermo Fisher Scientific | 596-3320 | for filtration of aggregated clusters after synthesis and surface coating to achieve a uniform solution |
Vacuum Controller V-850 | Buchi | BU-V850 | for filtration of aggregated clusters after synthesis and surface coating to achieve a uniform solution |
Vacuum Oven | Fisher Scientific | 13-262-51 | used to create high temperature and pressure needed for nanocluster formation in hydrothermal synthesis |