Este artigo descreve um protocolo para determinar diferenças no estado basal redox e respostas redox a perturbações agudas em neurônios hipocampais primários e corticais usando microscopia viva confocal. O protocolo pode ser aplicado a outros tipos de células e microscópios com modificações mínimas.
A homeostase mitocondrial redox é importante para a viabilidade e a função neuronais. Embora as mitocôndrias contenham vários sistemas redox, a glutothione tampão de tiool-dissulfeto altamente abundante é considerada um jogador central em defesas antioxidantes. Portanto, medir o potencial mitocondrial glutatione redox fornece informações úteis sobre o status de redox mitocondrial e estresse oxidativo. Glutaredoxin1-roGFP2 (Grx1-roGFP2) é um indicador proporção de proporção geneticamente codificado e verde (GFP) do potencial de glutathione redox que tem dois picos de excitação sensíveis ao estado-redox a 400 nm e 490 nm com um único pico de emissão de 510 nm. Este artigo descreve como realizar microscopia ao vivo confocal de Grx1-roGFP2 com destino a mitocôndrias em neurônios hipocampais e corticais primários. Descreve como avaliar o potencial de glutationo mitocondrial de estado estável (por exemplo, comparar estados da doença ou tratamentos de longo prazo) e como medir as alterações de redox em tratamentos agudos (usando a droga excitotóxica N-metil-D-aspartate (NMDA) como exemplo). Além disso, o artigo apresenta co-imagem de Grx1-roGFP2 e o indicador potencial da membrana mitocondrial, tetrametilrhodamina, éster etílico (TMRE), para demonstrar como o Grx1-roGPF2 pode ser multiplexado com indicadores adicionais para análises multiparamétricas. Este protocolo fornece uma descrição detalhada de como (i) otimizar as configurações do microscópio de varredura a laser confocal, (ii) aplicar medicamentos para estimulação seguido de calibração de sensores com diamide e dithiothreitol, e (iii) analisar dados com ImageJ/FIJI.
Várias enzimas mitocondriais importantes e moléculas de sinalização estão sujeitas à regulação de thiol redox1. Além disso, as mitocôndrias são uma grande fonte celular de espécies reativas de oxigênio e são seletivamente vulneráveis a danos oxidativos2. Assim, o potencial mitocondrial redox afeta diretamente bioenergésicos, sinalização celular, função mitocondrial e, finalmente, viabilidade celular3,4. A matriz mitocondrial contém altas quantidades (1-15 mM) da glutationa tampão de tampo de tiol-dissulfeto (GSH) para manter a homeostase redox e montar defesas antioxidantes5,6. O GSH pode ser covalentemente ligado a proteínas-alvo (S-glutathionylation) para controlar seu status e atividade redox e é usado por uma gama de enzimas desintoxificantes que reduzem proteínas oxidadas. Portanto, o potencial mitocondrial glutathione redox é um parâmetro altamente informativo ao estudar a função mitocondrial e a fisiopatologia.
roGFP2 é uma variante de GFP que foi tornada sensível ao redox pela adição de dois cisteínas expostas à superfície que formam um par de dithiol-dissulfeto artificial7,8. Tem um único pico de emissão em ~510 nm e dois picos de excitação em ~400 nm e 490 nm. É importante ressaltar que as amplitudes relativas dos dois picos de excitação dependem do estado redox do roGFP2 (Figura 1), tornando esta proteína um sensor ratiométrico. No sensor Grx1-roGFP2, a glutaredoxina humana-1 (Grx1) foi fundida ao N-terminus de roGFP29,10. O acessório covalent da enzima Grx1 ao roGFP2 proporciona duas grandes melhorias do sensor: torna a resposta do sensor específica para o par de glutationa redox GSH/GSSG (Figura 1), e acelera o equilíbrio entre GSSG e roGFP2 por um fator de pelo menos 100.0009. Portanto, o Grx1-roGFP2 permite imagens específicas e dinâmicas do potencial de glutationa celular redox.
As imagens grx1-roGFP2 podem ser realizadas em uma ampla gama de microscópios, incluindo microscópios de fluorescência de campo largo, microscópios confocal de disco giratório e microscópios confocal de varredura a laser. A expressão do sensor nos neurônios primários pode ser alcançada por vários métodos que incluem lipofecção11, coprecipitação de DNA/cálcio-fosfato12, transferência genética mediada por vírus ou uso de animais transgênicos como fonte celular (Figura 2). Vírus adeno associados a adeninantes pseudotipados (rAAV) contendo uma razão de 1:1 de proteínas capsidas AAV1 e AAV2 13,14 foram utilizados para os experimentos neste artigo. Com este vetor, a expressão do sensor máximo é tipicamente atingida de 4 a 5 dias após a infecção e permanece estável por pelo menos duas semanas. Usamos com sucesso Grx1-roGFP2 em neurônios hipocampais e corticais primários de ratos e ratos.
Neste artigo, a expressão mediada por rAAV de Grx1-roGFP2 com metas de mitocôndrias em neurônios hipocampais e corticais de ratos primários é usada para avaliar o estado de glutationa mitocondrial basal e sua perturbação aguda. Um protocolo é fornecido para imagens ao vivo confocal com instruções detalhadas sobre como (i) otimizar as configurações do microscópio confocal de varredura a laser, (ii) executar um experimento de imagem ao vivo e (iii) analisar dados com FIJI.
Medições quantitativas e dinâmicas do estado mitocondrial redox fornecem informações importantes sobre fisiologia mitocondrial e celular. Várias sondas químicas fluorogênicas estão disponíveis que detectam espécies reativas de oxigênio, “estresse redox” ou “estresse oxidativo”. No entanto, os últimos termos não são bem definidos e muitas vezes carecem de especificidade9,17,18. Em comparação com os corantes quím…
The authors have nothing to disclose.
Este trabalho foi apoiado pela Deutsche Forschungsgemeinschaft (BA 3679/5-1; PARA 2289: BA 3679/4-2). A.K. é apoiada por uma bolsa ERASMUS+. Agradecemos a Iris Bünzli-Ehret, Rita Rosner e Andrea Schlicksupp pela preparação dos neurônios primários. Agradecemos ao Dr. Tobias Dick por fornecer pLPCX-mito-Grx1-roGFP2. Experimentos mostrados na Figura 4 foram realizados no Nikon Imaging Center, Universidade de Heidelberg. A Figura 2 foi preparada com BioRender.com.
reagents | |||
Calcium chloride (CaCl2·2H2O) | Sigma-Aldrich | C3306 | |
Diamide (DA) | Sigma-Aldrich | D3648 | |
Dithiothreitol (DTT) | Carl Roth GmbH | 6908.1 | |
Glucose (2.5 M stock solution) | Sigma-Aldrich | G8769 | |
Glucose | Sigma-Aldrich | G7528 | |
Glycine | neoFroxx GmbH | LC-4522.2 | |
HEPES (1 M stock solution) | Sigma-Aldrich | 15630-080 | |
HEPES | Sigma-Aldrich | H4034 | |
Magnesium chloride (MgCl2·6H2O) | Sigma-Aldrich | 442611-M | |
N-methyl-D-aspartate (NMDA) | Sigma-Aldrich | M3262 | |
Potassium chloride (KCl) | Sigma-Aldrich | P3911 | |
Sodium chloride (NaCl) | neoFroxx GmbH | LC-5932.1 | |
Sodium pyruvate (0.1 M stock solution) | Sigma-Aldrich | S8636 | |
Sodium pyruvate | Sigma-Aldrich | P8574 | |
Sucrose | Carl Roth GmbH | 4621.1 | |
Tetramethylrhodamine ethyl ester perchlorate (TMRE) | Sigma-Aldrich | 87917 | |
equipment | |||
imaging chamber | Life Imaging Services (Basel, Switzerland) | 10920 | Ludin Chamber Type 3 for Ø12mm coverslips |
laser scanning confocal microscope, microscope | Leica | DMI6000 | |
laser scanning confocal microscope, scanning unit | Leica | SP8 | |
peristaltic pump | VWR | PP1080 181-4001 | |
spinning disc confocal microscope, camera | Hamamatsu | C9100-02 EMCCD | |
spinning disc confocal microscope, incubationsystem | TokaiHit | INU-ZILCF-F1 | |
spinning disc confocal microscope, microscope | Nikon | Ti microscope | |
spinning disc confocal microscope, scanning unit | Yokagawa | CSU-X1 | |
software | |||
FIJI | https://fiji.sc | ||
StackReg plugin | https://github.com/fiji-BIG/StackReg/blob/master/src/main/java/StackReg_.java | ||
TurboReg plugin | https://github.com/fiji-BIG/TurboReg/blob/master/src/main/java/TurboReg_.java |