Митохондрии являются ключевыми метаболическими органеллами, которые демонстрируют высокий уровень фенотипической пластичности в скелетных мышцах. Импорт белков из цитозоля является критическим путем для биогенеза органелл, необходимым для расширения ретикулума и поддержания функции митохондрий. Поэтому импорт белка служит барометром клеточного здоровья.
Митохондрии являются ключевыми метаболическими и регуляторными органеллами, которые определяют энергоснабжение, а также общее состояние здоровья клетки. В скелетных мышцах митохондрии существуют в серии сложных морфологий, начиная от небольших овальных органелл до широкой, похожей на ретикулум сети. Понимание того, как митохондриальный ретикулум расширяется и развивается в ответ на различные стимулы, такие как изменения в спросе на энергию, уже давно является темой исследований. Ключевым аспектом этого роста, или биогенеза, является импорт белков-предшественников, первоначально кодируемых ядерным геномом, синтезированных в цитозоле и транслоцированных в различные митохондриальные субкомпоненты. Митохондрии разработали сложный механизм для этого процесса импорта, включающий множество селективных внутренних и внешних мембранных каналов, известных как механизм импорта белка (PIM). Импорт в митохондрии зависит от жизнеспособного мембранного потенциала и наличия АТФ, полученного из органелл, путем окислительного фосфорилирования. Поэтому его измерение может служить мерой здоровья органелл. PIM также демонстрирует высокий уровень адаптивной пластичности в скелетных мышцах, которая тесно связана с энергетическим статусом клетки. Например, было показано, что физические упражнения увеличивают импортную способность, в то время как мышечное неиспользование уменьшает ее, совпадая с изменениями маркеров содержания митохондрий. Хотя импорт белка является критическим шагом в биогенезе и расширении митохондрий, этот процесс не широко изучен в скелетных мышцах. Таким образом, в этой статье описывается, как использовать изолированные и полностью функциональные митохондрии из скелетных мышц для измерения способности импортировать белок, чтобы способствовать лучшему пониманию используемых методов и оценке важности пути для оборота органелл в физических упражнениях, здоровье и болезнях.
Митохондрии — это органеллы, которые существуют в сложных морфологиях в различных типах клеток и, как признано, обладают растущим набором функций, которые имеют решающее значение для здоровья клеток. Как таковые, они больше не могут быть сведены только к органеллам, производящим энергию. Митохондрии являются ключевыми метаболическими регуляторами, детерминантами судьбы клеток и сигнальными центрами, функции которых могут служить полезными индикаторами общего клеточного здоровья. В клетках скелетных мышц исследования электронной микроскопии показывают наличие географически различных субсарколеммальных (SS) и межмиофибриллярных (IMF) митохондрий, которые демонстрируют степень связности1,2,3,4, которая в настоящее время признана очень динамичной и адаптируемой к изменениям в уровнях активности скелетных мышц, а также с возрастом и болезнями. Содержание и функция митохондрий в мышцах могут быть оценены различными способами5,6, и традиционные методы выделения органелл были применены для лучшего понимания дыхательных и ферментативных возможностей (Vmax) митохондрий, отличных от влияния клеточной среды7,8. В частности, эти традиционные методы выявили тонкие биохимические различия между митохондриями, выделенными из субсарколеммальных и межмиофибриллярных областей, опровергая возможные функциональные последствия для метаболизма в этих субклеточных областях8,9,10,11.
Биогенез митохондрий уникален тем, что требует вклада генных продуктов как из ядерной, так и из митохондриальной ДНК. Однако подавляющее большинство из них получено из ядра, поскольку транскрипция мтДНК приводит только к синтезу 13 белков. Поскольку митохондрии обычно содержат >1000 белков, участвующих в различных метаболических путях, биогенез органеллы требует жестко регулируемых средств импорта и сборки белков-предшественников из цитозола в различные митохондриальные подкомпоненты для поддержания надлежащей стехиометрии и функции12,13. Ядерно-кодированные белки, предназначенные для митохондрий, обычно несут митохондриальную целевую последовательность (MTS), которая нацеливает их на органеллу и облегчает их субкомпарментальную локализацию. Большинство связанных с матрицей белков содержат расщепляемый N-концевой MTS, в то время как те, которые предназначены для внешней или внутренней митохондриальной мембраны, обычно имеют внутренние целевые домены14. Процесс импорта осуществляется по набору разнообразных каналов, которые обеспечивают несколько путей для входа в органеллу13. Транслоказ комплекса наружной мембраны (TOM) переносит предшественников из цитозола в межмембранное пространство, где они распознаются транслоказой комплекса внутренней мембраны (TIM). Этот комплекс отвечает за импорт ядерно-кодированных прекурсоров в матрицу, где протеазы расщепляют N-концевую целевую пресеквацию. Белки, предназначенные для внешней мембраны, могут быть непосредственно вставлены в эту мембрану через комплекс TOM, в то время как те, которые предназначены для внутренней мембраны, вставляются белком TIM, в частности TIM22. После их импорта белки дополнительно обрабатываются резидентными протеазами и шаперонами и часто объединяются, образуя более крупные комплексы, такие как те, которые обнаружены в цепи переноса электронов.
Сам импорт митохондриального белка также служит измерением здоровья митохондрий, так как этот процесс опирается на наличие мембранного потенциала и источника энергии в виде АТФ15. Например, когда мембранный потенциал рассеивается, протеинкиназа PINK1 не может быть поглощена органеллой, и это приводит к сигналам фосфорилирования, которые вызывают начало деградации органеллы через путь, называемый митофагией16,17. При аналогичных обстоятельствах, когда импорт затруднен, белок ATF5 не может попасть в органеллу, и впоследствии он перемещается в ядро, где он служит фактором транскрипции для повышения регуляции экспрессии гена УПО18,19. Таким образом, измерение эффективности импорта белка может обеспечить всестороннее понимание здоровья органеллы, в то время как реакция экспрессии генов может быть использована для указания степени ретроградной передачи сигналов в ядро.
Несмотря на его очевидную важность для биогенеза митохондрий и для клеточного здоровья в целом, путь импорта в митохондриях млекопитающих удивительно недостаточно изучен. В этом отчете мы описываем конкретные шаги, связанные с измерением импорта белков-предшественников в митохондрии скелетных мышц, и предоставляем данные, иллюстрирующие адаптивную реакцию системы импорта на изменения в мышцах и неиспользование, иллюстрируя вклад импорта белка в адаптивную пластичность скелетных мышц.
Митохондрии уникально зависят от экспрессии и координации как ядерного, так и митохондриального геномов для их синтеза и расширения в клетках. Тем не менее, ядерный геном кодирует подавляющее большинство (99%) митохондриального протеома, и это подчеркивает важность механизма импорта бе…
The authors have nothing to disclose.
Авторы хотели бы поблагодарить доктора Г.C Шора из Университета Макгилла, доктора А. Штрауса из Вашингтонской школы медицины и доктора .M.Т. Райана из Университета Ла Троуб за оригинальные пожертвования экспрессионных плазмид, которые были использованы для этого исследования. Эта работа была поддержана финансированием со стороны Совета по естественным наукам и инженерным исследованиям Канады (NSERC) Д. А. Худа. Д. А. Худ также является обладателем Канадской исследовательской кафедры в области клеточной физиологии.
0.2% BSA | Sigma | A2153 | |
35S-methionine | Perkin Elmer | NEG709A500UC | Purchase requires a valid radioisotope permit |
ATP | Sigma | A7699 | |
Blotting paper; Whatman 3MM CHR Paper | Thermo Fisher | 05-714-5 | |
Cassette for film | Kodak | Kodak Xomatic | |
Centrifugation Tube | Thermo Fisher | 3138-0050 | |
Chloroform | Thermo Fisher | C298-4 | |
DTT | Sigma | D9779-5G | |
EDTA | BioShop | EDT002 | |
EGTA | Sigma | E4378 | |
Gel Dryer | BioRad | Model 583 | |
Gel Drying Kit | Sigma or BioRad | Z377570-1PAK or OW-GDF-10 | Various options are commercially available through many companies, these are just as few examples. |
Glycerol | Caledon Laboratory Chemicals | 5350-1-40 | |
HEPES | Sigma | H3375 | |
High Speed Centrifuge | Beckman Coulter | Avanti J-25 Centrifuge | |
Homogenizer | IKA | T25 Digital Ultra Turrex | |
Isoamylalcohol, or 3-methylbutanol | Sigma | I9392 | |
KAc | BioShop | POA301.500 | |
KCl | Sigma | P3911 | |
M7G | New England Biolab | S1404S | Dilute with 1000ul 20mM HEPES to make 1mM stock |
MgCl | BioShop | MAG510 | |
MgSO4 | Thermo Fisher | M65-500 | |
MOPS | BioShop | MOP001 | |
NaCl | BioShop | SOD001 | |
NTP | Thermo Fisher | R0191 | |
OCT Plasmid | – | – | Donated from Dr. G. C. Shore, McGill University, Montreal, Canada; alternative available through Addgene, plasmid #71877 |
pGEM4Z/hTom40 Plasmid | – | – | Donated from Dr. M. T. Ryan, La Trobe University, Melbourne, Australia |
pGMDH Plasmid | – | – | Donated from Dr. A. Strauss, Washington University School of Medicine |
Phenol | Sigma | P4557 | |
Phenol:Chloroform:Isoamyalcohol | Sigma | P3803 | Can also be made with the ratio provided |
Phosphorus Film | Fujifilm | BAS-IP MS 2025 | |
Rabbit reticulocyte lysate | Promega | L4960 | Avoid freeze-thaw; aliquot lysate upon arrival; amino acids are provided in the kit as well |
RNAsin | Promega | N2311 | |
Rotor for High Speed Centrifuge | Beckman Coulter | JA-25.50 | |
SDS | BioShop | SDS001.500 | Caution: harmful if ingested or inhaled, wear a mask. |
Sodium acetate | Bioshop | SAA 304 | |
Sodium Carbonate | VWR | BDH9284 | |
Sodium salicylate | Millipore Sigma | 106601 | |
Sorbitol | Sigma | S6021 | |
SP6 RNA Polymerase | Promega | P1085 | |
Spectrophotometer | Thermo Fisher | Nanodrop 2000 | |
Spermidine | Sigma | S-2626 | |
Sucrose | BioShop | SUC507 | |
T7 RNA Polymerase | Promega | P2075 | |
Tabletop Centrifuge | Thermo Fisher | AccuSpin Micro 17 | |
Trichloroacetic acid | Thermo Fisher | A322-500 | |
Tris | BioShop | TRS001 | |
β-mercaptoethanol | Sigma | M6250-100ML |