Summary

使用噬菌体显示开发用于E3连接酶的泛素变体调节剂

Published: August 27, 2021
doi:

Summary

泛素化是翻译后修饰的关键蛋白质,其失调与许多人类疾病有关。该协议详细介绍了如何利用噬菌体显示来分离新的泛素变体,这些变体可以结合和调节控制泛素特异性,效率和模式的E3连接酶的活性。

Abstract

泛素是一种8.6 kDa的小蛋白,是泛素蛋白酶体系统的核心成分。因此,它可以与具有高特异性但低亲和力的各种蛋白质结合。通过噬菌体展示,可以设计泛素变体(UbV),使它们表现出比野生型泛素更好的亲和力,并保持与靶蛋白的结合特异性。噬菌体展示利用噬菌体文库,其中丝状M13噬菌体的pIII包衣蛋白(选择它是因为它显示在噬菌体表面上)与UbV融合。人类野生型泛素的特定残基是软的和随机的(即,偏向于天然野生型序列)以产生UbVs,从而避免蛋白质构象的有害变化,同时引入促进与靶蛋白的新相互作用所需的多样性。在噬菌体展示过程中,这些UbV在噬菌体涂层蛋白上表达和显示,并针对感兴趣的蛋白质进行平移。与靶蛋白表现出有利结合相互作用的UbV被保留,而较差的结合剂被冲走并从文库池中除去。保留的UbV附着在含有UbV相应噬菌体颗粒上的UbV被洗脱,扩增和浓缩,以便它们可以在另一轮噬菌体展示中与相同的靶蛋白平移。通常,最多进行五轮噬菌体展示,在此期间,对弱结合和/或混杂结合的UbV施加强大的选择压力,以便集中和富集具有较高亲和力的UbV。最终,分离出比野生型对应物对靶蛋白具有更高特异性和/或亲和力的UbV,并且可以通过进一步的实验进行表征。

Introduction

了解蛋白质 – 蛋白质相互作用的分子细节对于描绘生物过程的信号转导机制至关重要,特别是那些导致临床重要疾病的机制。近年来,噬菌体展示已被用作分离蛋白质/肽的实用且易于使用的方法,其与所需目标蛋白的结合得到了很大的改善1234,而靶蛋白相互作用又可用作蛋白 – 蛋白相互作用的细胞内探针。

泛素化是酶促活性(E1激活酶→E2偶联酶→E3连接酶)的级联反应,其共价偶联泛素(Ub)到蛋白质底物以靶向它们进行降解或介导细胞信号传导变化。此外,去泛素酶催化从蛋白质中去除泛素。因此,在细胞中,有成千上万的Ub依赖性蛋白质 – 蛋白质相互作用,其中绝大多数识别具有低亲和力但高特异性的共同表面,以允许通过大而多样化的表面进行弱相互作用。

Ernst等人将突变引入Ub的已知结合区域,以查看它们是否可以增强对目标蛋白质的结合亲和力,同时仍保持高选择性5。开发了一个超过100亿(7.5 x 1010)Ub变体(UbVs)的组合库,这些变体在Ub表面的位置发生了突变,介导了已知的Ub蛋白相互作用。该文库由表达融合到多样化UbV的M13噬菌体pIII涂层蛋白的噬菌体组成。因此,单个UbV可以在表达时通过包衣蛋白显示在噬菌体表面上。在选择过程中,显示与目标蛋白具有显着结合相互作用的UbV的噬菌体将在随后的噬菌体显示轮中被保留和富集,而显示与靶蛋白结合不良的UbV的噬菌体将被冲走并从噬菌体池中去除。保留的噬菌体颗粒含有与其显示的UbV相对应的噬菌体粒,允许它们在分离后进行测序和进一步表征。

利用这种蛋白质工程策略,开发了用于人类去泛素酶5和病毒蛋白酶的UbV抑制剂6。重要的是,我们通过劫持E2结合位点并激活占据HECT结构域上Ub结合外源的UbVs,为人类HECT家族E3连接酶生成了抑制性UbV7。我们还可以通过靶向E2结合位点来抑制单体环家族E3s,并诱导UbV二聚化以激活同源二聚体RING E3s8。对于多亚基RING E3s,UbVs可以通过靶向RING亚基(例如,对于APC / C复合物9)或破坏复合物形成(例如,对于SCF E3s10)来实现抑制。总的来说,可以利用UbV来系统地询问Ub蛋白酶体系统(UPS)中的蛋白质 – 蛋白质相互作用,以便我们可以更好地破译UPS酶的生化机制,并识别和验证治疗干预的功能位点。

以下方案描述了如何利用先前生成的Phage显示的UbV文库来靶向感兴趣的蛋白质,以及如何通过连续几轮噬菌体显示来富集与目标蛋白质相互作用的UbV结合剂。

Protocol

1. 试剂制备 PBS(磷酸盐缓冲盐水):将50 mL 10x PBS溶液与450 mL超纯H2 O混合。通过过滤灭菌并储存在4°C或室温(〜20-25°C)。 10%BSA(牛血清白蛋白):缓慢加入1克BSA至7mL超纯H2 O中,混合直至完全溶解(无团块)。加满超纯 H2O,直至最终体积为 10 mL。过滤灭菌并储存在4°C。 PB缓冲液(补充有1%BSA的PBS):缓慢加入5gBSA至400 mL超纯H2O和50 mL PBS中?…

Representative Results

噬菌体展示产生的粘合剂可以通过多种方式进行验证和分析。建议首先使用引物对噬菌体进行测序,引物位于噬菌体文库中多样化插入片段的两侧。理想的噬菌体展示实验将显示对多个序列的明显偏倚(图1)。其他序列也将存在,但计数较低,更多地显示为背景噪声。在提供的示例中,在泛素变体(UbV)和野生型UBE4B之间进行噬菌体显示时,存在对序列#1-4的特别偏倚。提供…

Discussion

如步骤2.1(蛋白质制备)中所述,可以使用多种方法来评估蛋白质浓度,并且每种方法都将基于用于噬菌体显示的特定靶蛋白具有独特的优缺点。以前已经提供了流行方法的详细描述和协议的来源11

使用上一轮噬菌体展示保留的噬菌体作为后续一轮的输入,通过逐渐去除结合微弱、瞬时或偶然结合的粘结剂来丰富良好的粘结剂。到第四轮和第五轮,理想情…

Disclosures

The authors have nothing to disclose.

Acknowledgements

泛素变体技术是在Sachdev Sidhu博士(多伦多大学)的实验室中设计的。WZ目前是人类与微生物组计划的CIFAR Azrieli全球学者。这项研究由授予WZ的NSERC发现补助金(RGPIN-2019-05721)资助。

Materials

Axygen Mini Tube System (0.65 mL, sterile, 96/Rack, 10 Racks/pack) Fisher Scientific 14-222-198 Culturing phage outputs after phage display.
BD Difco Dehydrated Culture Media: LB Broth, Miller (Luria-Bertani) Fisher Scientific DF0446-17-3 Preparing plates for titering.
Bovine Serum Albumin (BSA), Fraction V BioShop Canada ALB001 Buffer component.
Carbenicillin disodium salt 89.0-100.5% anhydrous Millipore-Sigma C1389-5G Culturing phagemid-infected cells.
Compact Digital Microplate Shaker Fisher Scientific 11-676-337 Shaking plates during incubation with the phage library.
Corning Microplate Aluminum Sealing Tape Fisher Scientific 07-200-684 Sealing phage glycerol stocks.
Dehydrated Agar Fisher Scientific DF0140-01-0 Preparing plates for titering.
DS-11 Spectrophotometer/Fluorometer DeNovix DS-11 FX+ Protein concentration measurement.
Greiner Bio-One CellStar 96-Well, Non-Treated, U-Shaped-Bottom Microplate Fisher Scientific 7000133 Storing phage glycerol stocks.
Hydrochloric Acid Fisher Scientific A144-500 Phage elution.
Invitrogen One Shot OmniMAX 2 T1R Chemically Competent E. coli Fisher Scientific C854003 Bacterial strain for phage infection.
Kanamycin Sulfate Fisher Scientific AAJ1792406 Culturing M13K07 helper phage-infected cells.
M13KO7 Helper Phage New England Biolabs  N0315S Permit phagemid packing and secretion.
MaxQ 4000 Benchtop Orbital Shaker Fisher Scientific 11-676-076 Bacterial cell culture.
Nunc MaxiSorp 96 well microplate, flat bottom Life Technologies 44-2404-21 Immobilizing proteins.
Phosphate Buffered Saline (PBS) 10X Solution Fisher Scientific BP3994 Buffer component/phage resuspension medium.
Polyester Films for ELISA and Incubation VWR 60941-120 Covering the microplates during incubation.
Polyethylene Glycol 8000 (PEG) Fisher Scientific BP233-1 Phage precipitation.
Sodium chloride Millipore-Sigma S3014 Phage precipitation.
Sterile Plastic Culture Tubes: Translucent Polypropylene Fisher Scientific 14-956-1D Culturing phage inputs.
Tetracycline Hydrochloride Fisher Scientific BP912-100 Culturing E. coli OmniMax cells.
Tris Base Fisher Scientific BP1525 Neutralizing eluted phage solution.
Tryptone Powder Fisher Scientific BP1421-2 Cell growth media component.
Tween 20 Fisher Scientific BP337500 Buffer component.
Yeast Extract Fisher Scientific BP1422-2 Cell growth media component.

References

  1. Karlsson, O. A., et al. Design of a PDZbody, a bivalent binder of the E6 protein from human papillomavirus. Scientific Reports. 5 (1), 9382 (2015).
  2. Veggiani, G., et al. Engineered SH2 domains with tailored specificities and enhanced affinities for phosphoproteome analysis. Protein Science. 28 (2), 403-413 (2019).
  3. Kaneko, T., et al. Superbinder SH2 domains act as antagonists of cell signaling. Science Signaling. 5 (243), (2012).
  4. Wiechmann, S., et al. Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation. Journal of Biological Chemistry. 292 (37), 15340-15351 (2017).
  5. Ernst, A., et al. A strategy for modulation of enzymes in the ubiquitin system. Science. 339 (6119), 590-595 (2013).
  6. Zhang, W., et al. Potent and selective inhibition of pathogenic viruses by engineered ubiquitin variants. PLOS Pathogens. 13 (5), 1006372 (2017).
  7. Zhang, W., et al. System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes. Molecular Cell. 62 (1), 121-136 (2016).
  8. Gabrielsen, M., et al. A general strategy for discovery of inhibitors and activators of RING and U-box E3 ligases with ubiquitin variants. Molecular Cell. 68 (2), 456-470 (2017).
  9. Brown, N. G., et al. Dual RING E3 architectures regulate multiubiquitination and ubiquitin chain elongation by APC/C. Cell. 165 (6), 1440-1453 (2016).
  10. Gorelik, M., et al. Inhibition of SCF ubiquitin ligases by engineered ubiquitin variants that target the Cul1 binding site on the Skp1-F-box interface. Proceedings of the National Academy of Sciences. 113 (13), 3527-3532 (2016).
  11. Goldring, J. P. D. Protein quantification methods to determine protein concentration prior to electrophoresis. Protein Electrophoresis. 869, 29-35 (2012).
  12. Zhang, W., Sidhu, S. S. Generating intracellular modulators of E3 ligases and deubiquitinases from phage-displayed ubiquitin variant libraries. The Ubiquitin Proteasome System: Methods and Protocols. 1844, 101-119 (2018).
  13. Sheehan, J., Marasco, W. A. Phage and yeast display. Microbiology Spectrum. 3 (1), 1-17 (2015).
  14. Lowman, H. B., Wells, J. A. Monovalent phage display: A method for selecting variant proteins from random libraries. Methods. 3 (3), 205-216 (1991).
  15. Lowman, H. B., Bass, S. H., Simpson, N., Wells, J. A. Selecting high-affinity binding proteins by monovalent phage display. Biochemistry. 30 (45), 1-7 (1991).
  16. Beaber, J. W., Tam, E. M., Lao, L. S., Rondon, I. J. A new helper phage for improved monovalent display of Fab molecules. Journal of Immunological Methods. 376 (1-2), 46-54 (2012).
  17. Galán, A., et al. Library-based display technologies: where do we stand. Molecular BioSystems. 12 (8), 2342-2358 (2016).
  18. Huang, S., et al. Ribosome display and selection of single-chain variable fragments effectively inhibit growth and progression of microspheres in vitro and in vivo. Cancer Science. 109 (5), 1503-1512 (2018).
  19. Yamaguchi, J., et al. cDNA display: a novel screening method for functional disulfide-rich peptides by solid-phase synthesis and stabilization of mRNA-protein fusions. Nucleic Acids Research. 37 (16), 1-13 (2009).
  20. Mochizuki, Y., Kumachi, S., Nishigaki, K., Nemoto, N. Increasing the library size in cDNA display by optimizing purification procedures. Biological Procedures Online. 15 (1), 1-5 (2013).
  21. Odegrip, R., et al. CIS display: In vitro selection of peptides from libraries of protein-DNA complexes. Proceedings of the National Academy of Sciences. 101 (9), 2806-2810 (2004).
  22. Reiersen, H., et al. Covalent antibody display–an in vitro antibody-DNA library selection system. Nucleic Acids Research. 33 (1), 1-9 (2005).
  23. Houlihan, G., Gatti-Lafranconi, P., Lowe, D., Hollfelder, F. Directed evolution of anti-HER2 DARPins by SNAP display reveals stability/function trade-offs in the selection process. Protein Engineering Design and Selection. 28 (9), 269-279 (2015).
  24. Zhang, W., et al. Generation and validation of intracellular ubiquitin variant inhibitors for USP7 and USP10. Journal of Molecular Biology. 429 (22), 3546-3560 (2017).
  25. Teyra, J., et al. Structural and functional characterization of ubiquitin variant inhibitors of USP15. Structure. 27 (4), 590-605 (2019).

Play Video

Cite This Article
Roscow, O., Zhang, W. Using Phage Display to Develop Ubiquitin Variant Modulators for E3 Ligases. J. Vis. Exp. (174), e62950, doi:10.3791/62950 (2021).

View Video