We describe a protocol to induce phase transition of TAR DNA-binding protein 43 (TDP-43) by light in the spinal motor neurons using zebrafish as a model.
Abnormal protein aggregation and selective neuronal vulnerability are two major hallmarks of neurodegenerative diseases. Causal relationships between these features may be interrogated by controlling the phase transition of a disease-associated protein in a vulnerable cell type, although this experimental approach has been limited so far. Here, we describe a protocol to induce phase transition of the RNA/DNA-binding protein TDP-43 in spinal motor neurons of zebrafish larvae for modeling cytoplasmic aggregation of TDP-43 occurring in degenerating motor neurons in amyotrophic lateral sclerosis (ALS). We describe a bacterial artificial chromosome (BAC)-based genetic method to deliver an optogenetic TDP-43 variant selectively to spinal motor neurons of zebrafish. The high translucency of zebrafish larvae allows for the phase transition of the optogenetic TDP-43 in the spinal motor neurons by a simple external illumination using a light-emitting diode (LED) against unrestrained fish. We also present a basic workflow of live imaging of the zebrafish spinal motor neurons and image analysis with freely available Fiji/ImageJ software to characterize responses of the optogenetic TDP-43 to the light illumination. This protocol enables the characterization of TDP-43 phase transition and aggregate formation in an ALS-vulnerable cellular environment, which should facilitate an investigation of its cellular and behavioral consequences.
Ribonucleoprotein (RNP) granules control a myriad of cellular activities in the nucleus and cytoplasm by assembling membrane-less partitions via liquid-liquid phase separation (LLPS), a phenomenon in which a homogeneous fluid demixes into two distinct liquid phases1,2. The dysregulated LLPS of RNA-binding proteins that normally function as RNP granule components promote abnormal phase transition, leading to protein aggregation. This process has been implicated in neurodevelopmental and neurodegenerative diseases3,4,5. The precise evaluation of a causal relationship between aberrant LLPS of RNA-binding proteins and disease pathogenesis is crucial for determining whether and how LLPS can be exploited as an effective therapeutic target. LLPS of RNA-binding proteins is relatively easy to study in vitro and in unicellular models but is difficult in multicellular organisms, especially in vertebrates. A critical requirement for analyzing such LLPS in individual cells within a tissue environment is to stably express a probe for the imaging and manipulation of LLPS in a disease-vulnerable cell type of interest.
Amyotrophic lateral sclerosis (ALS) is an ultimately fatal neurological disorder in which motor neurons of the brain and spinal cord are selectively and progressively lost due to degeneration. To date, mutations in more than 25 genes have been associated with the heritable (or familial) form of ALS, which accounts for 5%-10% of total ALS cases, and some of these ALS-causing genes encode RNA-binding proteins consisting of RNPs, such as hnRNPA1, TDP-43, and FUS6,7. Moreover, the sporadic form of ALS, which accounts for 90%-95% of total ALS cases, is characterized by the cytoplasmic aggregation of TDP-43 deposited in degenerating motor neurons. A major characteristic of these ALS-associated RNA-binding proteins is their intrinsically disordered regions (IDRs) or low-complexity domains that lack ordered three-dimensional structures and mediate weak protein-protein interactions with many different proteins that drive LLPS7,8. The fact that ALS-causing mutations often occur in the IDRs has led to the idea that aberrant LLPS and phase transition of these ALS-related proteins may underlie ALS pathogenesis9,10.
Recently, the optoDroplet method, a Cryptochrome 2-based optogenetic technique that allows the modulation of protein-protein interactions by light, was developed to induce phase transition of proteins with IDRs11. As this technique has been extended successfully to TDP-43, it has begun to uncover the mechanisms underlying pathological phase transition of TDP-43 and its associated cytotoxicity12,13,14,15. In this protocol, we outline a genetic method to deliver an optogenetic TDP-43 to ALS-vulnerable cell types, namely, spinal motor neurons in zebrafish using the BAC for the mnr2b/mnx2b gene encoding a homeodomain protein for motor neuron specification16,17. The high translucency of zebrafish larvae allows for simple, noninvasive light stimulation of the optogenetic TDP-43 that triggers its phase transition in the spinal motor neurons. We also present a basic workflow for the live imaging of the zebrafish spinal motor neurons and image analysis using the freely available Fiji/ImageJ software to characterize the responses of the optogenetic TDP-43 to the light stimulation. These methods allow for an investigation of TDP-43 phase transition in an ALS-vulnerable cellular environment and should help to explore its pathological consequences at cellular and behavioral levels.
All fish work was conducted in accordance with the Guide for the Care and Use of Laboratory Animals of the Institutional Animal Care and Use Committee (approval identification number 24-2) of the National Institute of Genetics (Japan), which has an Animal Welfare Assurance on file (assurance number A5561-01) at the Office of Laboratory Animal Welfare of the National Institutes of Health (NIH, USA).
1. Construction of BACs for expression of optogenetic TDP-43 gene from the mnr2b promoter
2. Tol2 transposon-mediated BAC transgenesis in zebrafish
3. Preparation of LED for blue light illumination
4. Imaging of zebrafish larvae expressing optogenetic TDP-43
5. Light stimulation of opTDP-43h-expressing fish by field illumination of a blue light-emitting diode (LED) light
6. Visualization of cytoplasmic relocation of optogenetic TDP-43 in the spinal motor neurons
7. Ratiometric comparison between opTDP-43h and EGFP-TDP-43z signals using ImageJ/Fiji
Live imaging of optogenetic and non-optogenetic TDP-43 proteins in the mnr2b+ spinal motor neurons of zebrafish larvae
To induce TDP-43 phase transition in the spinal motor neurons in zebrafish, a human TDP-43h that is tagged with mRFP1 and CRY2olig22 at the N- and C-termini, respectively, was constructed and designated as opTDP-43h14 (Figure 1A). The opTDP-43h gene fragment was introduced into a BAC containing the mnr2b locus (Figure 1B). The resulting BAC, designated as mnr2b-hs:opTDP-43h, was introduced into the zebrafish genome by Tol2 transposon-mediated BAC transgenesis19. To monitor the localization of non-optogenetic TDP-43 in the spinal motor neurons, a zebrafish TDP-43 encoded by tardbp gene was tagged with EGFP at the N-terminus (Figure 1A) and the EGFP-TDP-43z gene fragment was introduced into the mnr2b BAC, similar to opTDP-43h (Figure 1B). The resulting BAC, designated as mnr2b-hs:EGFP-TDP-43z, was introduced into the zebrafish genome by Tol2 transposon-mediated BAC transgenesis. The fish injected with each BAC construct was crossed with a wild-type fish and the resulting F1 fish were screened on day 3 for red (Tg[mnr2b-hs:opTDP-43h]) or green (Tg[mnr2b-hs:EGFP-TDP-43z]) fluorescence in the ventral spinal cord. The isolated red or green fluorescence-positive F1 fish were designated as Tg[mnr2b-hs:opTDP-43h] or Tg[mnr2b-hs:EGFP-TDP-43z], respectively.
Tg[mnr2b-hs:opTDP-43h] Tg[mnr2b-hs:EGFP-TDP-43z] double-transgenic fish at 48 hpf were anesthetized and embedded in a low melting agarose on their side; after agarose solidification, they were covered with E3 buffer to allow observations of the lateral side of the spinal cord from above. Confocal laser scanning microscopy was performed with a 20x water immersion objective lens and a combination of excitation/emission wavelengths: 473/510 nm for EGFP and 559/583 nm for mRFP1. The scanned fish was immediately and carefully taken from the agarose, transferred into E3 buffer in a six-well plate, and illuminated by a blue LED light by placing the plate on a LED panel at 28 °C (Figure 2A,B). After a 24-h illumination, the fish was anesthetized and embedded again in agarose before being scanned with a confocal microscopy using the same imaging conditions, except that the ROI was adjusted to include the corresponding spinal cord region imaged at 48 hpf (Figure 2B). The whole hemispinal cord of 4-5 contiguous spinal segments was imaged during the microscopy session (typically 20-30 min), generating z-series images containing 20-40 slices depending on the horizontalness of the longitudinal axis of the spinal cord of the mounted fish relative to the confocal scanning plane.
Visualization of cytoplasmic relocation of optogenetic TDP-43 in spinal motor neurons
To visualize the cytoplasmic relocation of opTDP-43h in single spinal motor neurons, the z-series images (typically 20-40 slices) acquired at 48 and 72 hpf were opened with Fiji and separated into each EGFP-TDP-43z and opTDP-43h channel. Max intensity projection images of EGFP-TDP-43z were created for images at 48 and 72 hpf and a single isolated spinal neuron identifiable in both images at 48 and 72 hpf was selected (Figure 2B, arrows). Spinal motor neurons with cell bodies located on the dorsal side of the motor column were considered suitable for measurements of the cell body shape because of their sparse distribution patterns.
After adjusting the intensity of the EGFP signal in EGFP-TDP-43z images, ROIs covering the somas of the motor neurons were set by tracing the edge of the EGFP signal at 48 and 72 hpf (Figure 2C). The fluorescent intensity along the major axis of the soma was measured for the EGFP-TDP-43z and opTDP-43h signals at 48 and 72 hpf (Figure 2C, right). At 48 hpf, the patterns of opTDP-43h and EGFP-TDP-43z signals largely overlapped each other.
In contrast, at 72 hpf, the peak of the opTDP-43h signal was found in the region where the EGFP-TDP-43z signal was low, namely in the cytoplasm, indicating the cytoplasmic relocation of opTDP-43h. The light-dependent cytoplasmic opTDP-43h relocation is initiated largely independently of non-optogenetic TDP-4314. In this assay, Max intensity projection images were used to estimate the position of the nucleus/cytoplasm boundary at the expense of quantitative measurements.
Ratiometric comparison of the fluorescence intensity of optogenetic and non-optogenetic TDP-43 in the spinal motor neurons
To evaluate the effects of the blue light stimulation on the fluctuating opTDP-43h protein levels, opTDP-43h signals in the cell body were measured before and after the light stimulation with reference to the EGFP-TDP-43z signal. The z-series images, including the spinal hemisegment, were opened with Fiji. To set ROIs covering single spinal motor neurons, Max intensity projection images of the EGFP-TDP-43z signal were created for 48 and 72 hpf, and single isolated spinal neurons that were identifiable in both 48 and 72 hpf images were selected (Figure 3A). Using freehand selections, ROIs were drawn and registered in a ROI manager for each of the 48 and 72 hpf images (Figure 3A). Max intensity projection of the EGFP-TDP-43z signal was considered suitable to set the ROIs because of its high contrast.
To quantify the opTDP-43h and EGFP-TDP-43z signals, Sum slices projection images for each channel of the same z-series images were produced for 48 and 72 hpf (Figure 3A). Using the registered ROI sets, the fluorescent intensities of opTDP-43h and EGFP-TDP-43z were measured for each time point. Relative amounts of opTDP-43h to EGFP-TDP-43z (RFP/GFP values) were calculated for each cell and time point by dividing the RFP value by the GFP value (Figure 3B). Of the four mnr2b-positive cells that were investigated, cell #1 notably displayed a saturated EGFP-TDP-43z signal (Figure 3A). Cells with saturated fluorescent signals should be excluded from the data sets when conducting quantitative analyses. Cells #2-#4 displayed decreasing trends of relative opTDP-43h levels to EGFP-TDP-43z after blue light illumination (Figure 3B), although a larger-scale analysis previously demonstrated that the decrease in relative opTDP-43h levels to EGFP-TDP-43z was not statistically significant (65 cells from three independent animals)14.
Figure 1: Construction of BAC DNA using the mnr2b locus. (A) Structures of the expression cassettes for opTDP-43h and EGFP-TDP-43z. (B) The zebrafish genomic region carried by the CH211-172N16 BAC DNA. The PCR-amplified expression cassettes for opTDP-43h and EGFP-TDP-43z are inserted downstream of the 5′-untranslated region (UTR) of the mnr2b (red arrow) in the first exon of mnr2b by homologous recombination. The bars indicate 500 (A) and 10k (B) bp. Please click here to view a larger version of this figure.
Figure 2: Live imaging of opTDP-43h before and after light stimulation. (A) A scheme of the light stimulation of opTDP-43h expressed in the spinal motor neurons of unrestrained Tg[mnr2b-hs:opTDP-43h] Tg[mnr2b-hs:EGFP-TDP-43z] double-transgenic fish through a field illumination of blue LED light from 48 to 72 hpf. (B) Max intensity projection images of the z-series confocal images of the ventral spinal cord before (48 hpf) and after (72 hpf) the light stimulation. The dashed lines demarcate the ventral limit of the spinal cord. Figures are adapted from Asakawa et al.14 (C) Cytoplasmic mislocalization of opTDP-43 after the 24-h blue light illumination. The contours of the soma of an mnr2b-positive cell (red arrows in B) observed at 48 and 72 hpf are shown in magenta. The major axes of the somas were shown with light blue. The normalized fluorescent intensity along the major axes was plotted. The asterisk indicates a cluster of strong opTDP-43 signals that do not display a strong EGFP-TDP-43z overlapping signal, indicating cytoplasmic opTDP-43h mislocalization. The bars indicate 1 mm (A), 20 µm (B), and 4 µm (C). Please click here to view a larger version of this figure.
Figure 3: Ratiometric comparisons of opTDP-43h and EGFP-TDP-43z before and after light stimulation. (A) ROIs covering the somas of four single mnr2b-positive cells at 48 and 72 hpf were drawn based on the EGFP-TDP-43z signal and are shown in magenta. The rectangular ROIs (bg) were used to subtract the background signal (background ROI). Figures are adapted from Asakawa et al.14 (B) The relative intensities of opTDP-43h to EGFP-TDP-43z were plotted for each cell at each time point as the RFP/GFP ratio. Cell #1, indicated by the asterisk, was not suitable for the ratiometric comparison because its EGFP-TDP-43z signal was saturated and its RFP/GFP value was overestimated. The bar indicates 10 µm. Please click here to view a larger version of this figure.
The mnr2b-BAC-mediated expression of opTDP-43h and EGFP-TDP-43z in zebrafish provides a unique opportunity for live imaging of TDP-43 phase transition in the spinal motor neurons. The optical transparency of body tissues of zebrafish larvae allows for the simple and noninvasive optogenetic stimulation of opTDP-43h. Comparisons between single spinal motor neurons over time demonstrated that the light-dependent oligomerization of opTDP-43h causes its cytoplasmic clustering, which is reminiscent of ALS pathology.
One of the critical parameters that define the phase behavior of an intrinsically disordered protein is intracellular concentration. A high level of opTDP-43h expression could potentially lead to light-independent opTDP-43h oligomerization, phase transition, and aggregation. Thus, the induction of a stable, nontoxic level of opTDP-43h expression in the spinal motor neurons is key to the successful evaluation of the physiological and pathological consequences of opTDP-43 phase transition on the spinal motor neurons. The mnr2b-BAC-mediated expression of opTDP-43 h appears to be suitable for this purpose because Tg[mnr2b-hs:opTDP-43h] fish display predominantly nuclear opTDP-43, they are capable of free swimming with an inflated swim bladder and they maintain full viability even after being raised under the continuous dark conditions from 1-5 dpf. In zebrafish, a conventional approach used to exogenously express a gene of interest is mRNA injection at the one-cell stage. However, a high dose of the TDP-43 protein translated from the injected mRNA all at once causes early developmental defects14 that preclude analyses of later differentiating spinal motor neurons. However, lowering the amount of injected mRNA to a tolerable level fails to supply sufficient opTDP-43h for optogenetic modulation in the spinal motor neurons by the time of its differentiation, indicating that mRNA injection is not a suitable method by which to deliver opTDP-43h to the spinal motor neurons of zebrafish. Another possible approach used to express opTDP-43h in the spinal motor neurons is injecting, at the one-cell stage, a plasmid or BAC DNA harboring the opTDP-43h construct under the control of a promoter that is active in the spinal motor neuron. Although the injection of mnr2b-hs:opTDP-43h BAC DNA can direct the expression of opTDP-43h in the spinal motor neurons, the number of opTDP-43h-positive motor neurons is low, and in such numerically restricted opTDP-43h-positive cells, the expression level is usually high, often associated with light-independent opTDP-43h aggregation. These observations collectively suggest that transgenic expression is an irreplaceable strategy by which to stably express opTDP-43h in the spinal motor neurons at a nontoxic level. Notably, although the mnr2b-BAC labels almost all spinal motor neurons in zebrafish20,23, the expression levels of opTDP-43h could vary among individual mnr2b-positive cells. This variation may be partly due to the intrinsic expression pattern of mnr2b associated with its regulatory role in motor neuron differentiation. Another potential cause for the variegated expression may result from a chromosomal position effect on the mnr2b-BAC inserts. Whatever the cause, the varied opTDP-43 expression levels among mnr2b-positive cells could cause variation in cytotoxicity associated with light-dependent opTDP-43h phase transition.
In zebrafish larvae, the somas of spinal motor neurons are densely aligned in the ventral spinal cord, and the somal cytoplasm has a much lower volume than that of the axonal cytoplasm. This anatomical feature limits quantitative analyses of cytoplasmic opTDP-43h in the spinal motor neurons: opTDP-43h is only quantitatively measurable in the nucleus and somal cytoplasm, but not in the entire cell of motor neurons. Quantitative imaging of a protein in the whole cell of spinal motor neurons, including the soma and the peripheral nerve terminal, remains a challenging task. Despite the restrictions on quantitative assays, the opTDP-43h/EGFP-TDP-43z ratio in the soma was shown to be elevated by the ALS-causing mutation in the IDR (A315T)14. Therefore, the present method is applicable to evaluating the effects of the TDP-43 mutation on protein stability associated with phase transition in the soma of spinal motor neurons.
In principle, the mnr2b-BAC approach can be extended to modulate the LLPS and evaluate the cytotoxicity of other ALS-related RNP proteins with IDRs beyond TDP-43. Several protocol steps may need to be adjusted to obtain an optimal expression level of such optogenetic probes in the spinal motor neurons. First, in the Tg[mnr2b-hs:opTDP-43h] transgenic construct, the hsp70l promoter was used as a basal promoter to boost opTDP-43h expression driven by mnr2b enhancers. The hsp70l promoter may be removed from the BAC construct if the expression level of a protein of interest is so high that it causes light-independent ectopic phase transition. Second, opTDP-43h is equipped with CRY2olig tag, which is a photolyase homology (PHR) domain carrying a point mutation enhancing the clustering capacity on blue light illumination22. The wild-type protein CRY2PHR may be used as a light-dependent oligomerization tag if there is a need to attenuate light-dependent clustering activity. Finally, to more faithfully recapitulate ALS pathology in zebrafish, it is desirable to establish an illumination protocol where fish physiology is minimally affected by the field illumination of blue light during the juvenile and adult stages. The present method uses a continuous blue light illumination from 48 to 72 hpf (for 24 h), and the illumination duration can be extended until 120 hpf (for 72 h) without losing fish viability14, although light-responsive physiological functions, such as vision, may be affected. By developing a protocol for intermittent light illumination, much longer-term light stimulation may become possible, which may in turn facilitate the development of opTDP-43h into more mature pathological aggregates. To achieve this, other optogenetic probes for modulating protein-protein interactions using different light wavelengths that are less physiologically disturbing24 may also be worth investigating further. Combinations of such improved optogenetic TDP-43 probes, appropriate promoters targeting disease-vulnerable cell types, and illumination protocols with minimal effects on physiological functions would open avenues for faithfully modeling the pathologies of TDP-43 proteinopathies not only in the spinal cord but also in the brain.
The authors have nothing to disclose.
This work was supported by SERIKA FUND (KA), KAKENHI Grant numbers JP19K06933 (KA) and JP20H05345 (KA).
Confocal microscope | Olympus | FV1200 | |
Epifluorescence microscope | ZEISS | Axioimager Z1 | |
Fluorescence stereomicroscope | Leica | MZ16FA | |
Glass base dish | IWAKI | 3910-035 | |
Incubator | MEE | CN-25C | |
LED panel | Nanoleaf Limited | Nanoleaf AURORA smarter kit | |
Mupid-2plus | TAKARA | AD110 | |
NucleoBond BAC100 | MACHEREY-NAGEL | 740579 | |
NuSieve GTG Agarose | LONZA | 50181 | |
Objective lens | Olympus | XLUMPlanFL N 20×/1.00 | |
Objective lens | ZEISS | Plan-Neofluar 5x/0.15 | |
Optical power meter | HIOKI | 3664 | |
Optical sensor | HIOKI | 9742-10 | |
Phenol red solution 0.5% | Merck | P0290-100ML | |
PrimeSTAR GXL DNA Polymerase | TAKARA | R050A | |
QIAquick Gel Extraction Kit | Qiagen | 28704 | |
Six-well dish | FALCON | 353046 | |
Spectrometer probe BLUE-Wave | StellerNet Inc. | VIS-50 | |
Syringe needle | TERUMO | NN-2725R | |
TaKaRa Ex Taq | TAKARA | RR001A | |
Tricane | Sigma-Aldrich | A5040 | |
Zebrafish BAC clone CH211-172N16 | BACPAC Genomics | CH211-172N16 |