Die kombinierte Verwendung von Mikroelektroden-Array-Technologie und 4-Aminopyridin-induzierter chemischer Stimulation zur Untersuchung der nozizeptiven Aktivität auf Netzwerkebene im Rückenmarksdorsalhorn wird skizziert.
Die Rollen und die Konnektivität bestimmter Arten von Neuronen innerhalb des Rückenmarkshorns (DH) werden mit hoher Geschwindigkeit abgegrenzt, um einen immer detaillierteren Überblick über die Schaltkreise zu erhalten, die der Verarbeitung von Wirbelsäulenschmerzen zugrunde liegen. Die Auswirkungen dieser Verbindungen auf eine breitere Netzwerkaktivität in der DH bleiben jedoch weniger gut verstanden, da sich die meisten Studien auf die Aktivität einzelner Neuronen und kleiner Mikroschaltkreise konzentrieren. Alternativ bietet die Verwendung von Mikroelektrodenarrays (MEAs), die die elektrische Aktivität in vielen Zellen überwachen können, eine hohe räumliche und zeitliche Auflösung der neuronalen Aktivität. Hier wird die Verwendung von MEAs mit Rückenmarksschnitten der Maus beschrieben, um die DH-Aktivität zu untersuchen, die durch chemisch stimulierende DH-Schaltkreise mit 4-Aminopyridin (4-AP) induziert wird. Die resultierende rhythmische Aktivität ist auf das oberflächliche DH beschränkt, über die Zeit stabil, durch Tetrodotoxin blockiert und kann in verschiedenen Scheibenorientierungen untersucht werden. Zusammen bietet dieses Präparat eine Plattform, um die DH-Schaltkreisaktivität im Gewebe von naiven Tieren, Tiermodellen chronischer Schmerzen und Mäusen mit genetisch veränderter nozizeptiver Funktion zu untersuchen. Darüber hinaus können MEA-Aufnahmen in 4-AP-stimulierten Rückenmarksschnitten als Schnellscreening-Werkzeug verwendet werden, um die Fähigkeit neuartiger antinozizeptiver Verbindungen zur Störung der Aktivität im Rückenmark DH zu beurteilen.
Die Rolle bestimmter Arten von inhibitorischen und exzitatorischen Interneuronen innerhalb des Rückenmarks DH wird mit einer schnellen Rate aufgedeckt 1,2,3,4. Zusammen machen Interneuronen über 95% der Neuronen im DH aus und sind an der sensorischen Verarbeitung, einschließlich der Nozizeption, beteiligt. Darüber hinaus sind diese Interneuronenschaltkreise wichtig, um festzustellen, ob periphere Signale die Neuroachse hinaufsteigen, um das Gehirn zu erreichen und zur Schmerzwahrnehmung beizutragen 5,6,7. Bisher haben die meisten Studien die Rolle von DH-Neuronen auf Einzelzell- oder Ganzorganismenebene untersucht, indem sie Kombinationen von intrazellulärer In-vitro-Elektrophysiologie, neuroanatomischer Markierung und In-vivo-Verhaltensanalyse verwendet haben 1,3,8,9,10,11,12,13,14 . Diese Ansätze haben das Verständnis der Rolle bestimmter Neuronenpopulationen bei der Schmerzverarbeitung erheblich verbessert. Es bleibt jedoch eine Lücke im Verständnis, wie bestimmte Zelltypen und kleine Makroschaltkreise große Populationen von Neuronen auf Mikroschaltkreisebene beeinflussen, um anschließend die Ausgabe der DH, Verhaltensreaktionen und die Schmerzerfahrung zu beeinflussen.
Eine Technologie, die die Funktion von Makroschaltungen oder Mehrzellen untersuchen kann, ist das Mikroelektrodenarray (MEA) 15,16. MEAs werden seit mehreren Jahrzehnten verwendet, um die Funktion des Nervensystems zu untersuchen17,18. Im Gehirn haben sie das Studium der neuronalen Entwicklung, der synaptischen Plastizität, des pharmakologischen Screenings und der Toxizitätstests erleichtert17,18. Sie können je nach Art der MEA sowohl für In-vitro- als auch für In-vivo-Anwendungen eingesetzt werden. Darüber hinaus hat sich die Entwicklung von MEAs rasant weiterentwickelt, wobei verschiedene Elektrodennummern und -konfigurationen jetzt verfügbarsind 19. Ein wesentlicher Vorteil von MEAs ist ihre Fähigkeit, die elektrische Aktivität in vielen Neuronen gleichzeitig mit hoher räumlicher und zeitlicher Genauigkeit über mehrere Elektroden zu bewerten15,16. Dies bietet eine breitere Ablesung dessen, wie Neuronen in Schaltkreisen und Netzwerken, unter Kontrollbedingungen und in Gegenwart von lokal applizierten Verbindungen interagieren.
Eine Herausforderung bei In-vitro-DH-Präparaten besteht darin, dass die laufende Aktivität in der Regel niedrig ist. Hier wird diese Herausforderung in Rückenmark-DH-Schaltungen mit dem spannungsgesteuerten K+-Kanalblocker 4-Aminopryidin (4-AP) angegangen, um DH-Schaltkreise chemisch zu stimulieren. Dieses Medikament wurde zuvor verwendet, um rhythmische synchrone elektrische Aktivität im DH von akuten Rückenmarksschnitten und unter akuten In-vivo-Bedingungen 20,21,22,23,24 zu etablieren. Diese Experimente haben Einzelzellpflaster und extrazelluläre Aufzeichnung oder Kalziumbildgebung verwendet, um die 4-AP-induzierte Aktivität20,21,22,23,24,25 zu charakterisieren. Zusammen hat diese Arbeit die Notwendigkeit einer exzitatorischen und inhibitorischen synaptischen Übertragung und elektrischer Synapsen für rhythmische 4-AP-induzierte Aktivität gezeigt. Daher wurde die 4-AP-Antwort als ein Ansatz angesehen, der native polysynaptische DH-Schaltkreise mit biologischer Relevanz und nicht als medikamenteninduziertes Epiphänomen entlarvt. Darüber hinaus zeigt die 4-AP-induzierte Aktivität ein ähnliches Ansprechprofil auf Analgetika und Antiepileptika wie neuropathische Schmerzzustände und wurde verwendet, um neuartige spinalbasierte Analgetika-Ziele wie die Connexine20,21,22 vorzuschlagen.
Hier wird ein Präparat beschrieben, das MEAs und chemische Aktivierung des spinalen DH mit 4-AP kombiniert, um diese nozizeptive Schaltung auf der Makroschaltungs- oder Netzwerkebene der Analyse zu untersuchen. Dieser Ansatz bietet eine stabile und reproduzierbare Plattform für die Untersuchung nozizeptiver Schaltkreise unter naiven und neuropathischen “schmerzähnlichen” Bedingungen. Dieses Präparat ist auch leicht anwendbar, um die Wirkung bekannter Analgetika auf Schaltkreisebene zu testen und neuartige Analgetika im hyperaktiven Rückenmark zu screenen.
Trotz der Bedeutung der spinalen DH für die nozizeptive Signalgebung, Verarbeitung und die daraus resultierenden Verhaltens- und emotionalen Reaktionen, die den Schmerz charakterisieren, bleiben die Schaltkreise in dieser Region schlecht verstanden. Eine zentrale Herausforderung bei der Untersuchung dieses Problems war die Vielfalt der Neuronenpopulationen, aus denen diese Schaltkreisebestehen 6,31,32. Jüngste Fortschritte in …
The authors have nothing to disclose.
Diese Arbeit wurde vom National Health and Medical Research Council (NHMRC) of Australia (Zuschüsse 631000, 1043933, 1144638 und 1184974 an B.A.G. und R.J.C.) und dem Hunter Medical Research Institute (Zuschuss an B.A.G. und R.J.C.) finanziert.
4-aminopyridine | Sigma-Aldrich | 275875-5G | |
100% ethanol | Thermo Fisher | AJA214-2.5LPL | |
CaCl2 1M | Banksia Scientific | 0430/1L | |
Carbonox (Carbogen – 95% O2, 5% CO2) | Coregas | 219122 | |
Curved long handle spring scissors | Fine Science Tools | 15015-11 | |
Custom made air interface incubation chamber | |||
Foetal bovine serum | Thermo Fisher | 10091130 | |
Forceps Dumont #5 | Fine Science Tools | 11251-30 | |
Glucose | Thermo Fisher | AJA783-500G | |
Horse serum | Thermo Fisher | 16050130 | |
Inverted microscope | Zeiss | Axiovert10 | |
KCl | Thermo Fisher | AJA383-500G | |
Ketamine | Ceva | KETALAB04 | |
Large surgical scissors | Fine Science Tools | 14007-14 | |
Loctite 454 Instant Adhesive | Bolts and Industrial Supplies | L4543G | |
MATLAB | MathWorks | R2018b | |
MEAs, 3-Dimensional | Multichannel Systems | 60-3DMEA100/12/40iR-Ti, 60-3DMEA200/12/50iR-Ti | 60 titanium nitride (TiN) electrodes with 1 internal reference electrode, organised in an 8×8 square grid. Electrodes are 12 µm in diameter, 40 µm (100/12/40) or 50 µm (200/12/50) high and equidistantly spaced 100 µm (100/12/40) or 200 µm (200/12/50) apart. |
MEA headstage | Multichannel Systems | MEA2100-HS60 | |
MEA interface board | Multichannel Systems | MCS-IFB 3.0 Multiboot | |
MEA net | Multichannel Systems | ALA HSG-MEA-5BD | |
MEA perfusion system | Multichannel Systems | PPS2 | |
MEAs, Planar | Multichannel Systems | 60MEA200/30iR-Ti, 60MEA500/30iR-Ti | 60 titanium nitride (TiN) electrodes with 1 internal reference electrode, organised in either a 8×8 square grid (200/30) or a 6×10 rectangular grid (500/30). Electrodes are 30 µm in diameter and equidistantly spaced 200 µm (200/30) or 500 µm (500/30) apart. |
MgCl2 | Thermo Fisher | AJA296-500G | |
Microscope camera | Motic | Moticam X Wi-Fi | |
Multi Channel Analyser software | Multichannel Systems | V 2.17.4 | |
Multi Channel Experimenter software | Multichannel Systems | V 2.17.4 | |
NaCl | Thermo Fisher | AJA465-500G | |
NaHCO3 | Thermo Fisher | AJA475-500G | |
NaH2PO4 | Thermo Fisher | ACR207805000 | |
Rongeurs | Fine Science Tools | 16021-14 | |
Small spring scissors | Fine Science Tools | 91500-09 | |
Small surgical scissors | Fine Science Tools | 14060-09 | |
Sucrose | Thermo Fisher | AJA530-500G | |
Superglue | cyanoacrylate adhesive | ||
Tetrodotoxin | Abcam | AB120055 | |
Vibration isolation table | Newport | VH3048W-OPT | |
Vibrating microtome | Leica | VT1200 S |