Summary

测量新鲜分离的小鼠肝细胞悬浮液中的脂肪酸β氧化

Published: September 09, 2021
doi:

Summary

脂肪酸β氧化是负责在许多不同细胞类型(包括肝细胞)中产生能量的重要代谢途径。在这里,我们描述了一种使用 14个C标记的棕榈酸测量新鲜分离的原代肝细胞中脂肪酸β氧化的方法。

Abstract

脂肪酸β氧化是满足肝脏能量需求的关键代谢途径,并为其他过程(如生酮和糖异生)提供底物和辅助因子,这对于维持全身葡萄糖稳态和支持禁食状态下的肝外器官功能至关重要。脂肪酸β氧化发生在线粒体和过氧化物酶体内,并通过多种机制进行调节,包括脂肪酸的摄取和活化,酶表达水平以及辅酶A和NAD +等辅助因子的可用性。在测量肝脏匀浆中脂肪酸β氧化的测定中,细胞裂解和辅助因子的超生理水平的常见添加掩盖了这些调节机制的影响。此外,匀浆中细胞器的完整性难以控制,并且在制剂之间可能会有很大差异。完整原代肝细胞中脂肪酸β氧化的测量克服了上述缺陷。该协议描述了一种测量与 14个C标记棕榈酸一起孵育的新鲜分离的原代小鼠肝细胞悬浮液中脂肪酸β氧化的方法。通过避免数小时至数天的培养,该方法具有更好地保存原始肝脏的蛋白质表达水平和代谢途径活性的优点,包括与喂养小鼠相比,在从禁食小鼠分离的肝细胞中观察到的脂肪酸β氧化的活化。

Introduction

脂肪酸β氧化是脂质代谢的必要过程,提供分解代谢途径来平衡脂肪酸合成和饮食中的摄入量。该过程为多个器官产生能量,包括心肌,肾皮层和禁食肝脏,并利用从饮食中获得的脂肪酸,脂肪组织脂肪分解和内部甘油三酯储存12

脂肪酸通过β氧化途径的氧化导致脂肪酰基链一次由两个碳连续缩短,以乙酰辅酶A的形式释放,并且该过程同时发生在线粒体和过氧化物酶体中。虽然大多数脂肪酸只经历β氧化,但有些脂肪酸在进入该途径之前在不同的碳中被氧化。例如,3-甲基取代的脂肪酸,如植烷酸,在进入β氧化途径之前,通过过氧化物酶体中的α氧化除去一个碳。类似地,一些脂肪酸首先通过氧化内质网中的末端甲基(ω-氧化)转化为二羧基脂肪酸,然后通过β氧化3在过氧化物酶体中优先氧化。

无论特定的细胞器如何,脂肪酸必须首先转化为辅酶A(CoA)硫酯或酰基辅酶A,才能通过β氧化途径被氧化。线粒体基质中长链酰基辅酶A的β氧化需要肉碱穿梭进行其易位,其中肉碱棕榈酰转移酶1(CPT1)催化酰基辅酶A向酰基肉碱的转化,并且是该过程中的限速酶4。一旦转移到线粒体基质,酰基辅酶A被重新形成并作为线粒体β氧化机制的底物。在禁食状态下,肝线粒体中通过β氧化产生的乙酰辅酶A主要引导至生酮作用。过氧化物酶体是超长链,支链和二羧酸脂肪酸β氧化的主要位点。过氧化物酶体不需要肉碱穿梭来导入脂肪酸底物,而是通过ATP结合盒(ABC)转运蛋白ABCD1-3的活性导入相应的酰基辅酶A5。在过氧化物酶体内,酰基辅酶A随后被一组专用的酶氧化,这与线粒体脂肪酸β氧化机制不同。线粒体和过氧化物酶体也需要供应NAD + 和游离辅酶A来氧化脂肪酰基链。肝脏中的CoA水平已被证明随着空腹而增加,支持在这种状态下发生的脂肪酸氧化速率的增加6。此外,过氧化物酶体中CoA降解的增加导致过氧化物酶体脂肪酸氧化7的选择性降低。因此,细胞内脂肪酸氧化的过程受到参与脂肪酸活化,运输和氧化的酶的表达水平和活性的调节,以及整个多个亚细胞区室的辅助因子和其他代谢物的浓度。

使用组织匀浆来测量脂肪酸氧化的程序破坏了调节和支持该过程的细胞结构,导致数据收集不能准确反映体内代谢。虽然使用接种的原代肝细胞的技术保留了该系统,但长时间培养分离的细胞会导致细胞中仍然存在的体内基因表达谱的丧失,当它们仍然生活在动物体内时89。以下方案描述了一种分离原代肝细胞的方法,并使用[1-14C]棕榈酸在分离后立即和悬浮液测定其脂肪酸β氧化的能力。该测定基于测量与酸溶性代谢物(ASM)或产物(如乙酰辅酶A)相关的放射性,由[1-14 C]棕榈酸1011的β氧化产生。

Protocol

小鼠(C57BL / 6J,雄性,9-11周龄)的所有实验程序均已获得西弗吉尼亚大学机构动物护理和使用委员会(IACUC)的批准。 1. 肝细胞分离 制备 在肝细胞分离前几天,制备 表1中列出的缓冲液和细胞培养基。设置一个水浴,温度设置为37°C,靠近将要进行手术的地方。 在肝细胞分离当天,在层流罩下,将35mL缓冲液1转移到无菌的50mL离心管中,将70…

Representative Results

这里描述的肝脏灌注通常产生3000-4000万个细胞/肝脏,平均活力为80%,通过台盼蓝排除估计(图2)。用于制备灌注缓冲液1和2的克雷布斯 – 亨赛莱特缓冲液(KHB)中葡萄糖的典型浓度为11 mM。当测量从禁食小鼠分离的肝细胞中的脂肪酸β氧化时,可以降低KHB中葡萄糖的浓度以更好地代表禁食状态。如图 2所示,将葡萄糖浓度降低到5.6mM对肝细胞的产量或活?…

Discussion

在肝脏灌注期间,避免引入气泡至关重要,因为它们会阻塞肝脏中的微毛细血管,防止或限制缓冲液循环并总体上降低肝细胞产量和活力2021。预防措施,例如在IVC插管之前仔细检查填充缓冲液的入口管路,并避免将入口管从含有缓冲液1的管中抬起以切换到缓冲液2,如本文所述,可以成功减少失败灌注的数量(活力<70%)。在灌注系统中使用气泡捕集?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国立卫生研究院(National Institutes of Health)向罗伯塔·莱昂纳迪(Roberta Leonardi)授予R35GM119528的支持。

Materials

(R)-(+)-Etomoxir sodium salt Tocris Bioscience 4539/10
[1-14C]-Palmitic acid, 50–60 mCi/mmol, 0.5 mCi/mL American Radiolabeled Chemicals ARC 0172A
1 M HEPES, sterile Corning 25060CI
10 µL disposable capillaries/pistons for positive displacement pipette Mettler Toledo 17008604
1000 µL, 200 µL, and 10 µL pipettes and tips
5 mL, 10 mL, and 25 mL serological pipettes
50 mL sterile centrifuge tubes CellTreat 229421
70% Perchloric acid Fisher Scientific A2296-1LB
BSA, fatty acid-free Fisher Scientific BP9704100
CaCl2 dihydrate MilliporeSigma 223506
D-(+)-Glucose MilliporeSigma G7021
EGTA Gold Biotechnology E-217
Ethanol Pharmco 111000200CSPP
Filter System, 0.22 μm PES Filter, 500 mL, Sterile CellTreat 229707
Gentamicin sulphate Gold Biotechnology G-400-25
HDPE, 6.5 mL scintillation vials Fisher Scientific 03-342-3
Hemocytometer
Hypodermic needles 22 G, 1.5 in BD Biosciences 305156
Isoflurane VetOne 502017
KCl Fisher Scientific BP366-1
KH2PO4 MilliporeSigma P5655
Liberase TM Research Grade MilliporeSigma 5401119001 Defined blend of purified collagenase I and II with a medium concentration of thermolysin
M199 medium MilliporeSigma M5017
MgSO4 heptahydrate MilliporeSigma M1880
Microcentrifuge Fisher Scientific accuSpin Micro 17
Microdissecting Scissors Roboz Surgical Instrument Co RS-5980
NaCl Chem-Impex International 30070
NaHCO3 Acros Organics 424270010
Palmitic acid MilliporeSigma P0500
Penicillin/streptomycin (100x) Gibco 15140122
Phosphate buffered saline (PBS) Cytiva Life Sciences SH30256.01
Positive displacement pipette MR-10, 10 µL Mettler Toledo 17008575
Refrigerated centrifuge with inserts for 50 mL conical tubes Eppendorf 5810 R
Round-bottom, 14 mL, polypropylene culture test tubes Fisher Scientific 14-956-9A
Scintillation counter Perkin Elmer TriCarb 4810 TR
ScintiVerse BD cocktail Fisher Scientific SX18-4
Shaking water bath, 30 L capacity New Brunswick Scientific  Model G76
Sterile cell strainers, 100 µm Fisher Scientific 22363549
Thumb Dressing Forceps Roboz Surgical Instrument Co RS-8120
Trypan Blue Corning 25900CI
Variable-flow peristaltic pump Fisher Scientific 138762
Water baths, 2–2.5 L capacity

References

  1. Alves-Bezerra, M., Cohen, D. E. Triglyceride Metabolism in the Liver. Comprehensive Physiology. 8 (1), 1-8 (2017).
  2. Lopaschuk, G. D., Ussher, J. R., Folmes, C. D., Jaswal, J. S., Stanley, W. C. Myocardial fatty acid metabolism in health and disease. Physiological Reviews. 90 (1), 207-258 (2010).
  3. Mannaerts, G. P., van Veldhoven, P. P. Functions and organization of peroxisomal beta-oxidation. Annals of the New York Academy of Sciences. 804, 99-115 (1996).
  4. Kerner, J., Hoppel, C. Fatty acid import into mitochondria. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 1486 (1), 1-17 (2000).
  5. Baker, A., et al. Peroxisomal ABC transporters: functions and mechanism. Biochemical Society Transactions. 43 (5), 959-965 (2015).
  6. Leonardi, R., Rehg, J. E., Rock, C. O., Jackowski, S. Pantothenate kinase 1 is required to support the metabolic transition from the fed to the fasted state. PloS One. 5 (6), 11107 (2010).
  7. Shumar, S. A., Kerr, E. W., Fagone, P., Infante, A. M., Leonardi, R. Overexpression of Nudt7 decreases bile acid levels and peroxisomal fatty acid oxidation in the liver. Journal of Lipid Research. 60 (5), 1005-1019 (2019).
  8. Richert, L., et al. Gene expression in human hepatocytes in suspension after isolation is similar to the liver of origin, is not affected by hepatocyte cold storage and cryopreservation, but is strongly changed after hepatocyte plating. Drug Metabolism and Disposition: The Biological Fate of Chemicals. 34 (5), 870-879 (2006).
  9. Colbert, R. A., Amatruda, J. M., Young, D. A. Changes in the expression of hepatocyte protein gene-products associated with adaptation of cells to primary culture. Clinical Chemistry. 30 (12), 2053-2058 (1984).
  10. Spurway, T. D., Sherratt, H. A., Pogson, C. I., Agius, L. The flux control coefficient of carnitine palmitoyltransferase I on palmitate beta-oxidation in rat hepatocyte cultures. Biochemical Journal. 323, 119-122 (1997).
  11. Consitt, L. A., et al. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha overexpression increases lipid oxidation in myocytes from extremely obese individuals. Diabetes. 59 (6), 1407-1415 (2010).
  12. Lee, S. M., Schelcher, C., Demmel, M., Hauner, M., Thasler, W. E. Isolation of human hepatocytes by a two-step collagenase perfusion procedure. Journal of Visualized Experiments: JoVE. (79), e50615 (2013).
  13. Lilly, K., Chung, C., Kerner, J., VanRenterghem, R., Bieber, L. L. Effect of etomoxiryl-CoA on different carnitine acyltransferases. Biochemical Pharmacology. 43 (2), 353-361 (1992).
  14. Yu, X. X., Drackley, J. K., Odle, J. Rates of mitochondrial and peroxisomal beta-oxidation of palmitate change during postnatal development and food deprivation in liver, kidney and heart of pigs. Journal of Nutrition. 127 (9), 1814-1821 (1997).
  15. Yu, X. X., Drackley, J. K., Odle, J., Lin, X. Response of hepatic mitochondrial and peroxisomal beta-oxidation to increasing palmitate concentrations in piglets. Biology of the Neonate. 72 (5), 284-292 (1997).
  16. Veerkamp, J. H., van Moerkerk, H. T. Peroxisomal fatty acid oxidation in rat and human tissues. Effect of nutritional state, clofibrate treatment and postnatal development in the rat. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 875 (2), 301-310 (1986).
  17. Hakvoort, T. B., et al. Interorgan coordination of the murine adaptive response to fasting. Journal of Biological Chemistry. 286 (18), 16332-16343 (2011).
  18. Sokolovic, M., et al. The transcriptomic signature of fasting murine liver. BMC Genomics. 9, 528 (2008).
  19. Kersten, S., et al. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. Journal of Clinical Investigation. 103 (11), 1489-1498 (1999).
  20. Li, W. C., Ralphs, K. L., Tosh, D. Isolation and culture of adult mouse hepatocytes. Methods in Molecular Biology. 633, 185-196 (2010).
  21. Ng, I. C., et al. Isolation of Primary Rat Hepatocytes with Multiparameter Perfusion Control. Journal of Visualized Experiments: JoVE. (170), e62289 (2021).
  22. Shen, L., Hillebrand, A., Wang, D. Q., Liu, M. Isolation and primary culture of rat hepatic cells. Journal of Visualized Experiments: JoVE. (64), e3917 (2012).
  23. Fulgencio, J. P., Kohl, C., Girard, J., Pegorier, J. P. Effect of metformin on fatty acid and glucose metabolism in freshly isolated hepatocytes and on specific gene expression in cultured hepatocytes. Biochemical Pharmacology. 62 (4), 439-446 (2001).
  24. Leonardi, R., Rock, C. O., Jackowski, S. Pank1 deletion in leptin-deficient mice reduces hyperglycaemia and hyperinsulinaemia and modifies global metabolism without affecting insulin resistance. Diabetologia. 57 (7), 1466-1475 (2014).
  25. Bougarne, N., et al. PPARalpha blocks glucocorticoid receptor alpha-mediated transactivation but cooperates with the activated glucocorticoid receptor alpha for transrepression on NF-kappaB. Proceedings of the National Academy of Sciences of the United States of America. 106 (18), 7397-7402 (2009).
  26. Korelova, K., Jirouskova, M., Sarnova, L., Gregor, M. Isolation and 3D collagen sandwich culture of primary mouse hepatocytes to study the role of cytoskeleton in bile canalicular formation in vitro. Journal of Visualized Experiments: JoVE. (154), e60507 (2019).

Play Video

Cite This Article
Vickers, S. D., Saporito, D. C., Leonardi, R. Measurement of Fatty Acid β-Oxidation in a Suspension of Freshly Isolated Mouse Hepatocytes. J. Vis. Exp. (175), e62904, doi:10.3791/62904 (2021).

View Video