胚胎发育需要细胞运动的大规模协调。双光子激发介导的激光烧蚀允许对大群深层细胞进行空间控制的三维烧蚀。此外,该技术可以探测 体内 集体迁移细胞对其机械环境中的扰动的反应。
形态发生涉及许多细胞运动,以将细胞组织成组织和器官。为了适当的发展,所有这些运动都需要紧密协调,积累的证据表明,这至少部分是通过机械相互作用实现的。在胚胎中测试这一点需要直接的身体扰动。激光烧蚀是一种日益常用的选择,可以缓解机械约束或物理隔离两个细胞群。然而,许多烧蚀都是用紫外线(UV)激光进行的,其提供的轴向分辨率和组织穿透有限。这里描述了一种使用双光子显微镜消融深度,显着和空间上明确定义的体积的方法。消融在表达轴向中端肠胚层中绿色荧光蛋白的转基因斑马鱼品系中表现出来,并用于切断轴向中胚层,而不影响上覆的外胚层或下面的卵黄细胞。在消融之前和之后通过实时成像监测细胞行为。消融方案可用于不同的发育阶段,任何细胞类型或组织,规模从几微米到超过一百微米不等。
细胞 – 细胞相互作用在发育中起着至关重要的作用。细胞提供信号,它们的直接邻居或更远的细胞可以感知,从而影响它们的命运和/或行为。其中许多信号本质上是化学性质的。例如,在表征良好的诱导事件中,一个细胞群产生可扩散的分子,影响另一个细胞群的命运1。然而,其他信号是机械的。细胞对邻居施加力和约束,邻居感知并做出反应2。
研究这些细胞 – 细胞 相互作用在体内 的重要性的一种方法是消除一些细胞并观察随后的发展。不幸的是,去除或破坏细胞的可用技术是有限的。细胞可以通过手术切除3,4,使用针头或小线,但这种治疗是侵入性的,不是很精确,通常在立体显微镜下进行,阻止在显微镜下立即成像。此外,靶向深层细胞意味着在覆盖的组织中刺穿一个洞,从而产生不必要的扰动。基因编码的光敏剂,如KillerRed,已被用于通过光照诱导细胞死亡5。光敏剂是在光照射下产生活性氧的发色团。它们的主要局限性是它们需要长光照明(约15分钟),如果细胞移动,这可能很难实现,并且它们通过细胞凋亡诱导细胞死亡,这不是立即的。
最后,激光烧蚀在过去15年中得到了发展和广泛的应用6,7,8,9,10,11,12。激光束聚焦在目标细胞/组织上。它通过加热,光消融或血浆诱导的消融诱导其消融;所涉及的过程取决于功率密度和曝光时间13。大多数烧蚀方案使用紫外激光器来实现其高能量。然而,紫外线既被生物组织吸收又被散射。因此,靶向深层细胞需要高激光功率,然后在更浅表的,平面外的组织中诱导损伤。这限制了紫外激光器在浅表结构上的使用,并解释了它们相对较低的轴向分辨率。非线性光学(所谓的双光子显微镜)使用光的非线性特性来激发荧光团,荧光团在红外域中具有大约一半能量的两个光子。当应用于消融术时,这有三个主要优点。首先,与紫外光相比,红外光的散射更少,被生物组织吸收更少14,从而可以在不增加所需激光功率的情况下到达更深的结构。其次,使用飞秒脉冲激光器可提供非常高的功率密度,通过等离子体感应产生烧蚀,这与加热相反,不会在空间上扩散15。第三,诱导等离子体形成的功率密度仅在焦点处达到。由于这些特性,双光子激光烧蚀可用于精确靶向深层细胞,而不会影响周围的组织环境。
集体迁移是发育过程的一个很好的例子,其中细胞 – 细胞相互作用是根本的。集体迁移被定义为相邻细胞影响一个细胞行为的细胞迁移16。这些相互作用的性质(化学或机械)以及它们如何影响细胞迁移可能会有很大差异,并且通常不完全理解。移除细胞并观察其如何影响其他细胞的能力对于进一步解开这些集体过程至关重要。几年前,我们使用手术方法确定,斑马鱼原肠胚形成过程中的洄游是集体迁徙17。Polster是一组细胞,构成胚胎背侧的第一个内化细胞18。这些细胞在 Tg(gsc:GFP) 转基因系中以绿色标记,位于胚胎深处,在几层外胚层细胞的下方。在原肠胚形成过程中,该组导致轴向中胚层的延伸,从胚胎组织者迁移到动物极19,20,21,22,23 (图1A)。我们确定细胞需要与邻居接触,以将其迁徙定位在动物极点的方向上。然而,更好地了解这种集体迁移的细胞和分子基础涉及去除一些细胞,看看这如何影响其余的细胞。因此,我们使用双光子显微镜设置开发了大而深体积的烧蚀。在这里,我们演示了使用该协议来切断中间的polster,并通过跟踪用Histone2B-mCherry标记的细胞核来观察对细胞迁移的影响。
在这里,我们描述了一种协议,该协议使用非线性光学来执行深度和空间上定义良好的体积烧蚀。该协议最关键的一步是找到提供足够能量以允许消融的处理条件,但不能过多的能量,以避免过多的碎片或空化。目标部位传递的能量主要取决于:(1)激光退出功率,(2)激光对准的质量,(3)光通过到达烧蚀平面的组织的性质,(4)烧蚀平面的深度。因此,在每次实验之前,测量激光退出功率…
The authors have nothing to disclose.
我们感谢Emilie Menant的鱼类护理,Polytechnique Bioimaging Facility,特别是Pierre Mahou,感谢在法兰西岛地区(interDIM)和国家研究机构(ANR-11-EQPX-0029 Morphoscope2,ANR-10-INBS-04 France BioImaging)部分支持的设备上提供实时成像。这项工作得到了ANR拨款15-CE13-0016-1,18-CE13-0024,20-CE13-0016以及欧盟地平线2020研究和创新计划的支持,该计划根据Marie Skłodowska-Curie赠款协议No 840201,高级和研究部和国家科学研究中心。
25x water immersion objective | Olympus | XLPLN25XWMP2 | |
Agarose | PanReac AppliChem | A8963,0500 | |
Data analysis software : Matlab | Math Works | ||
Electro-optic modulator (EOM) | ConOptics | 350-80LA | |
Embryo Medium (EM) solution | Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), 5th Edition. University of Oregon Press, Eugene (Book). (2000). | ||
Environmental chamber chamber | Okolab | H201-T-UNIT-BL | |
EOM driver | ConOptics | 302RM | |
Fluorescence source | Lumencor | SOLA | |
Glass bottom dishes | MatTek | P35G-0-10-C | |
Glass capillaries | Harvard Apparatus | 300085 | Outside diameter 1.0 mm, inside diameter 0.58 mm |
Glass pipettes | Volac | D810 | Tip should be fire polished |
Green/ablation laser | Spectra Physics | Mai Tai HP DeepSee | |
Histone2B-mCherry mRNA | Synthesized from pCS2-H2B-mCherry plasmid (Dumortier& al. 2012) | ||
Image analysis software: IMARIS | Bitplane | ||
ImSpector software | Abberior Instruments Development Team | ||
Injection mold | Adapative Science Tools | I-34 | |
Microloader tips | Eppendorf | 5242956003 | |
Micromanipulator | Narishige | MN-151 | |
Micropipette puller | Sutter | P-1000 | |
mMESSAGE mMACHINE SP6 Transcription Kit | Invitrogen | AM1340 | |
Penicillin-Streptomycin | Thermofisher | 15140-122 | 10 000 units penicillin and 10 mgstreptomycin per ml |
Photomultiplier tube (PMT) | Hammamatsu | H7422-40 | |
PicoPump (Air injector) | World Precision Instrument | PV820 | |
Red laser | Spectra Physics | OPO/Insight DeepSee | |
RNAse free water for injection | Sigma | W3500 | |
Spreadsheet software: Excel | Microsoft | ||
Stereomicroscope | Nikon | SMZ18 | |
Tg(gsc:GFP) zebrafish line | Doitsidou, M. et al. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell. 111 (5), 647–59, doi: doi.org/10.1016/S0092-8674(02)01135-2 (2002). | ||
TriM Scope II microscope | La Vision Biotech |