我々は、データの前処理、共発現クラスタリング、経路濃縮、タンパク質間相互作用ネットワーク解析を含む詳細なプロトコルを用いて、定量的プロテオミクスデータのネットワーク解析を実行および視覚化するためのシステム生物学ツールJUMPnを提示する。
質量分析ベースのプロテオミクス技術の最近の進歩により、何百ものプロテオームのディーププロファイリングがますます実現可能になっています。しかし、このような貴重なデータセットから生物学的な洞察を引き出すことは困難です。ここでは、システム生物学ベースのソフトウェアJUMPnと、モジュール(タンパク質複合体など)によって接続されたサンプルおよびタンパク質間相互作用(PPI)ネットワークにわたってプロテオームをタンパク質共発現クラスターに編成するための関連プロトコルを紹介します。R/Shinyプラットフォームを使用して、JUMPnソフトウェアは、統合されたデータ視覚化とユーザーフレンドリーなインターフェースにより、共発現クラスタリング、経路エンリッチメント、PPIモジュール検出の分析を合理化します。プロトコルの主なステップには、JUMPnソフトウェアのインストール、発現差のあるタンパク質または(dys)調節プロテオームの定義、意味のある共発現クラスターおよびPPIモジュールの決定、および結果の視覚化が含まれます。このプロトコルは、等圧標識ベースのプロテオームプロファイルを使用して実証されていますが、JUMPnは一般に、広範囲の定量データセット(例えば、ラベルフリープロテオミクス)に適用可能です。したがって、JUMPnソフトウェアとプロトコルは、定量的プロテオミクスにおける生物学的解釈を容易にする強力なツールを提供します。
質量分析ベースのショットガンプロテオミクスは、複雑なサンプル1のプロテオーム多様性を分析するための重要なアプローチとなっています。質量分析装置2、3、クロマトグラフィー4、5、イオン移動度検出6、取得方法(データ非依存7およびデータ依存取得8)、定量アプローチ(多重鎖等圧ペプチド標識法、例えば、TMT9、10、および標識フリー定量11、12)およびデータ分析戦略における最近の進歩/ソフトウェア開発13、14、15、16、17、18は、プロテオーム全体(例えば、10,000を超えるタンパク質)の定量化が、現在、19、20、21のルーチンである。しかし、このような深い定量的データセットから機械的な洞察を得る方法は依然として挑戦的です22。これらのデータセットを調査する最初の試みは、主にデータの個々の要素の注釈に依存し、各成分(タンパク質)を独立して処理しました。しかしながら、生物学的システムおよびその挙動は、個々の構成要素23を調べることによってのみ説明できない。したがって、定量化された生体分子を相互作用ネットワークの文脈に置くシステムアプローチは、複雑なシステムおよびヒト疾患の胚発生、免疫応答、および病因などの関連プロセスの理解に不可欠である24。
ネットワークベースのシステム生物学は、大規模な定量的プロテオミクスデータ25、26、27、28、29、30、31、32、33を分析するための強力なパラダイムとして浮上している。概念的には、哺乳類細胞のような複雑なシステムは、階層ネットワーク34,35としてモデル化することができ、その中で、システム全体が層で表され、最初に多数の大きな構成要素によって、次にそれぞれがより小さなサブシステムによって反復的にモデル化される。技術的には、プロテオームダイナミクスの構造は、共発現タンパク質クラスターの相互接続されたネットワーク(共発現遺伝子/タンパク質はしばしば調節36の類似の生物学的機能または機構を共有するため)および物理的に相互作用するPPIモジュール37によって提示され得る。最近の例25として、我々は、T細胞活性化中にプロテオーム全体およびホスホプロテオムの時間的プロファイルを生成し、PPIとの統合的共発現ネットワークを使用して、T細胞静止出口を媒介する機能モジュールを同定した。複数の生体エネルギー関連モジュールが強調表示され、実験的に検証された(例えば、ミトリボソームおよび複合体IVモジュール25、ならびに一炭素モジュール38)。別の例26では、アルツハイマー病の病因を研究するための我々のアプローチをさらに拡張し、疾患進行関連タンパク質モジュールおよび分子の優先順位付けに成功した。重要なことに、我々の偏りのない発見の多くは、独立した患者コホート26,29および/または疾患マウスモデル26によって検証された。これらの例は、定量的プロテオミクスおよび他のオミクス統合を用いて分子機構を解剖するためのシステム生物学アプローチの力を示した。
ここでは、ネットワークベースのシステム生物学アプローチを用いて定量的プロテオミクスデータを探求する合理化されたソフトウェアであるJUMPnを紹介します。JUMPnは、確立されたJUMPプロテオミクスソフトウェアスイート13、14、39の下流コンポーネントとして機能し、個々のタンパク質定量から生物学的に意味のある経路およびタンパク質モジュールまでのギャップを埋めることを目指しています。JUMPnは、発現差のある(または最も可変的な)タンパク質の定量化マトリックスを入力として取ることにより、プロテオームを、サンプルおよび高密度に接続されたPPIモジュール(例えば、タンパク質複合体)にわたって共発現するタンパク質クラスターの階層階層に編成し、過剰発現(または濃縮)分析によってパブリック経路データベースでさらに注釈を付けることを目指しています(図1)。JUMPnは、ユーザーフレンドリーなインターフェースのためにR/Shinyプラットフォーム40で開発され、共発現クラスタリング解析、経路エンリッチメント解析、PPIネットワーク解析の3つの主要な機能モジュールを統合しています(図1)。各分析後、結果は自動的に視覚化され、R /光沢のあるウィジェット機能を介して調整可能で、Microsoft Excel形式のパブリケーションテーブルとして簡単にダウンロードできます。以下のプロトコルでは、定量的な全プロテオームデータを例にとり、JUMPnソフトウェアのインストール、発現差のあるタンパク質または(dys)調節プロテオームの定義、共発現ネットワーク解析、PPIモジュール解析、結果の視覚化と解釈、トラブルシューティングなど、JUMPnを使用する主なステップについて説明します。JUMPn ソフトウェアは GitHub41 で自由に入手できます。
ここでは、深い定量的プロテオミクスデータ25,26,27,30,64を用いて分子機構を解剖するための複数のプロジェクトに適用されているJUMPnソフトウェアとそのプロトコルを紹介しました。JUMPnソフトウェアとプロトコルは、共発現ネットワーク解析のためのDEタンパク質の検討…
The authors have nothing to disclose.
資金援助は、国立衛生研究所(NIH)(R01AG047928、R01AG053987、RF1AG064909、RF1AG068581、およびU54NS110435)およびALSAC(米国レバノンシリア関連慈善団体)によって提供されました。MS解析は、NIHがんセンター支援助成金(P30CA021765)によって部分的に支援されたセントジュード小児研究病院のプロテオミクスおよびメタボロミクスセンターで実施された。コンテンツは著者の責任であり、必ずしも国立衛生研究所の公式見解を表すものではありません。
MacBook Pro with a 2.3 GHz Quad-Core Processor running OS 10.15.7. | Apple Inc. | MacBook Pro 13'' | Hardware used for software development and testing |
Anoconda | Anaconda, Inc. | version 4.9.2 | https://docs.anaconda.com/anaconda/install/ |
miniconda | Anaconda, Inc. | version 4.9.2 | https://docs.conda.io/en/latest/miniconda.html |
RStudio | RStudio Public-benefit corporation | version 4.0.3 | https://www.rstudio.com/products/rstudio/download/ |
Shiny Server | RStudio Public-benefit corporation | https://shiny.rstudio.com/articles/shinyapps.html |