La modification de l’équipement existant de réseau multiélectrodes ou de pince patch rend l’électrorétinogramme ex vivo plus largement accessible. Des méthodes améliorées pour enregistrer et maintenir les réponses lumineuses ex vivo facilitent l’étude du photorécepteur et de la fonction des cellules ON-bipolaires dans la rétine saine, des modèles animaux de maladies oculaires et des rétines de donneurs humains.
Les mesures des réponses lumineuses neuronales rétiniennes sont essentielles pour étudier la physiologie de la rétine saine, déterminer les changements pathologiques dans les maladies de la rétine et tester les interventions thérapeutiques. L’électrorétinogramme ex vivo (ERG) permet de quantifier les contributions de types cellulaires individuels dans la rétine isolée par l’ajout d’agents pharmacologiques spécifiques et l’évaluation des changements tissulaires intrinsèques indépendamment des influences systémiques. Les réponses lumineuses rétiniennes peuvent être mesurées à l’aide d’un porte-échantillon ERG ex vivo spécialisé et d’une installation d’enregistrement, modifiés à partir d’un équipement de pince patch ou de réseau de microélectrodes existant. En particulier, l’étude des cellules ON-bipolaires, mais aussi des photorécepteurs, a été entravée par le déclin lent mais progressif des réponses lumineuses dans l’ERG ex vivo au fil du temps. L’augmentation de la vitesse de perfusion et l’ajustement de la température du perfusat améliorent la fonction rétinienne ex vivo et maximisent l’amplitude et la stabilité de la réponse. L’ERG ex vivo permet uniquement l’étude de types individuels de cellules neuronales rétiniennes. En outre, les améliorations visant à maximiser les amplitudes de réponse et la stabilité permettent d’étudier les réponses lumineuses dans des échantillons de rétine de grands animaux, ainsi que dans des yeux de donneurs humains, faisant de l’ERG ex vivo un ajout précieux au répertoire des techniques utilisées pour étudier la fonction rétinienne.
L’électrorétinographie mesure la fonction rétinienne en réponse à la lumière1. Il fait partie intégrante de l’étude de la physiologie et de la physiopathologie rétiniennes et de la mesure du succès des thérapies pour les maladies de la rétine. L’ERG in vivo est largement utilisé pour évaluer la fonction rétinienne dans les organismes intacts, mais il présente des limites importantes 2,3. Parmi ceux-ci, l’analyse quantitative des différents types de cellules rétiniennes dans l’ERG in vivo est entravée, car elle enregistre la somme des changements potentiels, et donc des réponses superposées, de toutes les cellules rétiniennes aux stimuli lumineux4. En outre, il ne permet pas facilement l’ajout de médicaments à la rétine, est vulnérable aux influences systémiques et a un rapport signal sur bruit relativement faible. Ces inconvénients sont éliminés dans l’ERG ex vivo qui étudie la fonction de la rétine isolée 2,3,5,6. L’ERG ex vivo permet l’enregistrement de réponses importantes et stables de types de cellules rétiniennes spécifiques par l’ajout d’inhibiteurs pharmacologiques et l’évaluation facile des agents thérapeutiques, qui peuvent être ajoutés au superfusat. En même temps, il élimine les influences des effets systémiques et élimine les bruits physiologiques (par exemple, le rythme cardiaque ou la respiration).
Dans l’ERG ex vivo, les rétines ou les échantillons rétiniens sont isolés et montés côté photorécepteur vers le haut sur le dôme du porte-échantillon 3,5. Le porte-échantillon est assemblé, connecté à un système de perfusion qui alimente la rétine en milieux oxygénés chauffés, et placé sur la scène d’un microscope, qui a été modifié pour délivrer des stimuli lumineux contrôlés par ordinateur. Pour enregistrer les réponses suscitées par la lumière, le porte-échantillon est connecté à un amplificateur, un numériseur et un système d’enregistrement (Figure 1). Cette technique permet d’isoler les réponses des photorécepteurs des bâtonnets et des cônes, des cellules ON-bipolaires et de la glie de Müller en modifiant les paramètres des stimuli lumineux et en ajoutant des agents pharmacologiques.
Une pince patch existante ou une configuration MEA (multi-électrodes array) peut être convertie pour enregistrer l’ERG ex vivo, soit en conjonction avec un adaptateur ERG ex vivo disponible dans le commerce, soit avec un porte-échantillon personnalisé usiné par commande numérique par ordinateur (CNC) en polycarbonate, pour mesurer les réponses lumineuses dans les rétines à partir de petits modèles animaux, tels que des souris. Cette modification augmente l’accessibilité des GRE ex vivo tout en minimisant le besoin d’équipement spécialisé. La conception du porte-échantillon simplifie la technique de montage et intègre des électrodes, éliminant ainsi le besoin de manipuler des microélectrodes par rapport aux méthodes ERG ex vivo transrétiniennes précédemment signalées7. Le taux de perfusion et la température à l’intérieur du porte-échantillon sont des facteurs importants qui affectent les propriétés de réponse des photorécepteurs et des cellules ON-bipolaires. En ajustant ces conditions, l’ERG ex vivo peut être enregistré de manière fiable à partir de la rétine isolée de la souris sur des périodes prolongées. Des conditions expérimentales optimisées permettent des enregistrements ERG ex vivo dans des poinçons rétiniens provenant de rétines plus grandes, y compris de grands yeux d’animaux et des yeux de donneurs humains8.
Développé à l’origine en 1865 par Holmgren pour mesurer les réponses lumineuses rétiniennes de la rétineamphibienne 10, des contraintes techniques ont initialement empêché l’ERG d’être largement utilisé. Néanmoins, des études fondamentales menées par Ragnar Granit et d’autres ont identifié les origines cellulaires de l’ERG et mesuré les réponses des photorécepteurs et des cellules ON-bipolaires ex vivo11,12,13…
The authors have nothing to disclose.
Ce travail a été soutenu par les subventions EY02665 et EY031706 du National Eye Institute et de l’International Retinal Research Foundation au Dr Vinberg, National Institutes of Health Core Grant (EY014800), et une subvention sans restriction de Research to Prevent Blindness, New York, NY, au Département d’ophtalmologie et des sciences visuelles, Université de l’Utah. Le Dr Frans Vinberg est également récipiendaire d’une bourse de développement de carrière de recherche pour prévenir la cécité/Dr H. James et Carole Free, et la Dre Silke Becker d’une subvention ARVO EyeFind. Nous remercions la Dre Anne Hanneken du Scripps Research Institute d’avoir fourni l’œil du donneur utilisé pour les enregistrements illustrés à la figure 2E.
2 mm socket | WPI | 2026-10 | materials to prepare electrode |
Ag/AgCl Electrode | World Precision Instruments | EP1 | materials to prepare electrode |
Ames' medium | Sigma Aldrich | A1420 | perfusion media |
barium chloride | Sigma Aldrich | B0750 | potassium channel blocker |
DL-AP4 | Tocris | 0101 | broad spectrum glutamatergic antagonist |
OcuScience Ex Vivo ERG Adapter | OcuScience | n/a | ex vivo ERG specimen holder |
Threaded luer connector | McMaster-Carr | 51525K222 or 51525K223 | materials to prepare electrode |