Un protocole est prévu pour la mise en place d’un microscope confocal à balayage laser standard pour les mesures in vivo de transfert d’énergie par résonance de Förster, suivies d’une évaluation des données.
Les expériences de transfert d’énergie de résonance de Förster (FRET) basées sur des émissions sensibilisées sont faciles à réaliser, mais dépendent de la configuration microscopique. Les microscopes confocaux à balayage laser sont devenus un cheval de bataille pour les biologistes. Les systèmes commerciaux offrent une grande flexibilité dans le réglage de la puissance laser et la sensibilité du détecteur et combinent souvent différents détecteurs pour obtenir l’image parfaite. Cependant, la comparaison des données basées sur l’intensité de différentes expériences et configurations est souvent impossible en raison de cette flexibilité. Les procédures conviviales pour les biologistes sont avantageuses et permettent un réglage simple et fiable des réglages du laser et du détecteur.
De plus, comme les expériences FRET dans des cellules vivantes sont affectées par la variabilité de l’expression des protéines et des rapports donneur-accepteur, les niveaux d’expression des protéines doivent être pris en compte pour l’évaluation des données. Décrit ici est un protocole simple pour des mesures FRET fiables et reproductibles, y compris des routines pour l’estimation de l’expression des protéines et l’ajustement de l’intensité laser et des paramètres du détecteur. L’évaluation des données sera effectuée par étalonnage avec une fusion de fluorophores de l’efficacité FRET connue. Pour améliorer la simplicité, des facteurs de correction ont été comparés qui ont été obtenus dans les cellules et en mesurant des protéines fluorescentes recombinantes.
Le transfert d’énergie de résonance de Förster ((F)RET) est généralement observé par spectroscopie de fluorescence, bien que le processus lui-même ne se limite pas à se produire entre les fluorophores. Le couplage dipôle-dipôle sous-jacent nécessite simplement une molécule donneuse émettant de la lumière et un accepteur absorbant la lumière. Ceci est dérivé de l’intégrale de chevauchement spectral requise J des spectres normalisés d’émission du donneur et d’absorbance de l’accepteur1. Cependant, comme le RET est en concurrence avec la fluorescence, le transfert d’énergie devient mesurable par des altérations de l’émission de fluorescence : le RET induit la trempe du donneur et l’émission d’accepteur sensibilisé.
Le RET à base de fluorophore a été appelé transfert d’énergie de résonance de fluorescence (FRET) pour le séparer du transfert d’énergie de résonance de bioluminescence (BRET). Le RET dépend fortement de la distance entre le donneur et l’accepteur, qui est largement comprise entre 0,5 et 10 nm2 et donc dans la même gamme que les dimensions des protéines et de leurs complexes. Deuxièmement, RET dépend de l’orientation dipôle-dipôle kappa au carré. Combiné au fait que la liberté de rotation des fluorophores liés aux protéines peut être négligée en raison du poids moléculaire et de la relaxation rotationnelle lente, RET permet l’analyse des altérations conformationnelles3.
Le rayon de Förster est basé sur l’intégrale du chevauchement spectral et la gamme de longueurs d’onde du chevauchement, de sorte que les chromophores absorbant la lumière rouge entraînent des rayons de Förster plus longs que les colorants absorbant la lumière bleue. Comme la plage dynamique des mesures FRET est limitée de 0,5 × R0 et de 1,5 × R0, la paire FRET ECFP-EYFP a une plage dynamique de 2,5 à 7,3 nm en raison de son R0 de 4,9 nm4.
La luminosité d’un fluorophore est donnée par le produit de son coefficient d’extinction molaire et de son rendement quantique. Pour les mesures FRET, il est avantageux de choisir des fluorophores de luminosité presque similaire. Cela améliore la détection de la trempe du donneur et de l’émission d’accepteurs sensibilisés. Il favorise également l’étalonnage du système de microscopie. En regardant les paires FRET fréquemment utilisées de protéines cyan et fluorescentes, la luminosité plus faible des protéines fluorescentes cyan devient évidente (Figure 1A).
Cependant, la durée de vie de l’accepteur doit être inférieure à la durée de vie du donneur, ce qui garantit la disponibilité de l’accepteur pour le transfert d’énergie. Si la durée de vie de l’accepteur dépasse la durée de vie du donneur, l’accepteur peut encore être dans l’état excité lorsque le donneur est à nouveau excité. Les protéines fluorescentes cyan avancées telles que mTurquoise montrent une durée de vie prolongée et contribuent ainsi à une probabilité accrue de FRET (Figure1B). La probabilité de FRET dépend également du coefficient d’extinction molaire de l’accepteur.
La trempe du donneur et l’émission d’accepteur sensibilisée sont caractérisées par une relation linéaire qui permet le calcul du FRET basé sur le donneur ou l’accepteur. Les facteurs de linéarité correspondants sont appelés facteur G (donneur à accepteur) ou xi (accepteur à donneur), qui sont des valeurs réciproques4. La mesure de FRET entre les protéines fluorescentes par microscopie à fluorescence nécessite souvent des corrections pour le DSBT et l’ASBT en raison des large…
The authors have nothing to disclose.
Les expériences ont été réalisées à la plate-forme technologique de microscopie optique (LiMiTec) de la Faculté de biologie de l’Université de Bielefeld. Ce travail a été financé par l’Université de Bielefeld.
8-well slides | Ibidi | 80821 | |
Immersion oil Immersol W2010 | Zeiss | 444969-0000-000 | refraction index of water |
LSM 1: AxioObserver with LSM 780 scan head, confocal laser scanning microscope | Zeiss | ||
LSM 2: AxioObserver with LSM 5 scan head, confocal laser scanning microscope | Zeiss |