Дендритная морфология нейронов часто лежит в основе функции. Действительно, многие болезненные процессы, влияющие на развитие нейронов, проявляются с морфологическим фенотипом. Этот протокол описывает простой и мощный метод анализа интактных дендритных беседок и связанных с ними шипов.
Активность мозга, электрохимические сигналы, передаваемые между нейронами, определяется паттернами связности нейронных сетей, а также морфологией процессов и подструктур внутри этих нейронов. Таким образом, многое из того, что известно о функции мозга, возникло наряду с разработками в технологиях визуализации, которые позволяют глубже понять, как нейроны организованы и связаны в мозге. Улучшения в очистке тканей позволили получить визуализацию толстых срезов мозга с высоким разрешением, облегчая морфологическую реконструкцию и анализ нейронных субструктур, таких как дендритные беседки и шипы. В тандеме достижения в области программного обеспечения для обработки изображений предоставляют методы быстрого анализа больших наборов данных изображений. Эта работа представляет собой относительно быстрый метод обработки, визуализации и анализа толстых срезов меченой нервной ткани с высоким разрешением с использованием очистки тканей CLARITY, конфокальной микроскопии и анализа изображений. Этот протокол облегчит усилия по пониманию паттернов связности и морфологии нейронов, которые характеризуют здоровый мозг, и изменений в этих характеристиках, которые возникают в больных состояниях мозга.
Понимание пространственной организации, паттернов связности и морфологии сложных трехмерных биологических структур имеет важное значение для разграничения функций конкретных клеток и тканей. Это особенно верно в нейробиологии, в которой огромные усилия были посвящены построению нейроанатомических карт центральной нервной системы высокого разрешения1,2. Тщательное изучение нейронов, составляющих эти карты, дает различные морфологии, со связями и местоположениями, которые отражают функцию этих разнообразных наборов нейронов3,4. Более того, исследование субклеточных структур, особенно дендритных шипов, может информировать о зрелости синапсов, тем самым отражая процессы развития и неврологические болезненные состояния5,6,7. Таким образом, подходы, которые улучшают разрешение и пропускную способность изображения, необходимы для лучшего понимания функции мозга во всех масштабах.
Последние достижения расширили молекулярно-генетический инструментарий для маркировки и манипулирования популяциями нейронов. Разработка новых флуоресцентных маркеров в сочетании с новыми методами введения этих маркеров в нейроны позволяет дифференциально маркировать популяции взаимодействующих нейронов в пределах одного и того же образца животного или мозга8,9,10,11. Поскольку свет рассеивается непрозрачными липидами и, учитывая высокое содержание липидов в мозговой ткани, визуализация нейронных популяций в основном была ограничена тонкими участками или опиралась на передовые методы микроскропии (например, конфокальную, многофотонную и светоливую микроскопию) для изображения глубоких структур. Тем не менее, эти усилия были значительно подкреплены достижениями в методах очистки тканей. Прозрачный липидообменный акриламид-гибридизированный Rigid Imaging/immunostaining/insitu гибридизация-совместимый Tissue-hYdrogel (CLARITY) является одним из таких методов, в котором ткани, представляющие интерес, вводят гидрогелевые мономеры (акриламид и бис-акриламид), а затем промывают моющими средствами12. Мономеры гидрогеля гибридизируются для создания стабильного 3D-гидрогелевого каркаса, который оптически прозрачен и проницаем для этикеток макромолекул. Нуклеиновые кислоты и белки поддерживаются в гибридизированной матрице, тогда как липиды удаляются моющими средствами(рисунок 1). Это приводит к стабильной ткани, которая достаточно жесткая, чтобы поддерживать первоначальную форму и ориентацию клеток и нелипидных молекул, в то время как оптически достаточно прозрачна, чтобы легко визуать глубокие структуры с высоким разрешением. Это поддержание структуры и ориентации ткани позволяет визуализировать толстые срезы, тем самым сохраняя межклеточные связи и пространственные отношения. Более того, поскольку местоположение и доступность белков и нуклеиновых кислот сохраняется в процессе очистки, очищенные ткани способны удерживать маркеры на основе экспрессии, а также экзогенные метки. Таким образом, CLARITY позиционируется как мощный метод визуализации большого количества глубоких структур мозга и связей между этими структурами с высоким разрешением.
Использование CLARITY значительно улучшает подходы к визуализации нейронных популяций. Этот метод особенно искусен в создании больших объемов данных визуализации. CLARITY хорошо работает с несколькими формами флуоресценции на основе белка. Этот протокол использует лентивирусный подход к разреженной маркировке клеток с помощью EGFP и tdTomato; однако обычно используются трансгенные репортерные аллели, экспрессирующие tdTomato или EGFP для маркировки клеток для реконструкции. Важно выбрать флуорофор, который является как фотостабийным, так и ярким (например, EGFP или tdTomato). Кроме того, использование сильного промотора для экспрессии флуорофора обеспечивает превосходную контрастность и качество изображения. Недостатки этой методики возникают, так как правильный анализ такого большого объема данных может быть как трудоемким, так и трудоемким. Специализированные микроскопы могут помочь повысить пропускную способность и уменьшить рабочую нагрузку. Тем не менее, создание, владение и / или эксплуатация передовых микроскопов часто являются непомерно дорогими для многих лабораторий. Эта работа представляет собой высокопроизводительный, относительно быстрый и простой метод визуализации больших объемов нервной ткани с высоким разрешением с использованием очистки тканей CLARITY от больших участков в сочетании со стандартной конфокальной микроскопией. Этот протокол описывает этот подход посредством следующих этапов: 1) рассечение и подготовка нервной ткани, 2) очистка ткани, 3) монтаж ткани, 4) визуализация подготовленных срезов и 5) обработка полных изображений с использованием программного обеспечения визуализации микроскопии реконструкции и анализа(рисунок 2). Эти усилия приводят к изображениям с высоким разрешением, которые могут быть использованы для анализа популяций нейронов, паттернов нейронных связей, морфологии 3D-дендриты, изобилия и морфологии дендритного позвоночника, а также молекулярных паттернов экспрессии в неповрежденной ткани мозга.
До появления современных методов очистки тканей изучение морфологии нейронов состояло из трудоемкого сечения, визуализации и реконструкции соседних очень тонких участков. Использование электрофоретического очищения тканей в сочетании с конфокальной визуализацией обеспечивает бес…
The authors have nothing to disclose.
Мы хотели бы поблагодарить вирусное ядро NRDDC в Неврологическом институте Яна и Дэна Дункана за производство AAV и лентивирусов, используемых в этих экспериментах. Кроме того, мы хотели бы поблагодарить Медицинский колледж Бейлора Центр сравнительной медицины за разведение мышей и общее содержание используемых мышей. Мы хотели бы поблагодарить Американскую кардиологической ассоциацию за их поддержку под номером 20PRE35040011 и BRASS: Baylor Research Advocates for Student Scientists за их поддержку (PJH). Наконец, мы хотели бы поблагодарить Logos за предоставление нашей лаборатории электрофоретической системы очистки тканей Logos X-Clarity.
15 mL Conical Tube | Thermo Scientific | 339650 | |
25 G x 1" Needle | BD | 305127 | |
30% Acrylamide (No-Bis) | National Diagnostics | EC-810 | |
50 mL Conical Tube | Thermo Scientific | 339653 | |
Electrophoretic Tissue Clearing Solution | Logos | C13001 | |
Histodenz | Sigma | D2158-100G | |
Hydrogel Solution Kit | Logos | C1310X | |
Imaris | Oxford Instruments | N/A | |
Paraformaldehyde 16% | EMS | 15710 | |
PBS, 1x, 500 mL, 6 bottles/case | fisher | MT21040CV | |
VA-044 | Wako | 925-41020 | |
X-CLARITY Polymerization System | Logos | C20001 | |
X-CLARITY Tissue Clearing System II | Logos | C30001 |