Summary

Imagem e quantificação de dendritos neuronais intactos via clareza de tecido

Published: April 20, 2021
doi:

Summary

A morfologia dendrítica neuronal muitas vezes está por trás da função. De fato, muitos processos de doenças que afetam o desenvolvimento de neurônios se manifestam com um fenótipo morfológico. Este protocolo descreve um método simples e poderoso para analisar arbores dendríticas intactas e suas espinhas associadas.

Abstract

A atividade cerebral, os sinais eletroquímicos passados entre os neurônios, é determinada pelos padrões de conectividade das redes neuronais, e pela morfologia dos processos e subestruturas dentro desses neurônios. Como tal, muito do que se sabe sobre a função cerebral surgiu ao lado de desenvolvimentos em tecnologias de imagem que permitem uma visão mais aprofundada sobre como os neurônios são organizados e conectados no cérebro. Melhorias na limpeza tecidual permitiram imagens de alta resolução de fatias cerebrais grossas, facilitando a reconstrução morfológica e análises de subestruturas neuronais, como arbóreos dendráticos e espinhas. Em conjunto, os avanços no software de processamento de imagens fornecem métodos de análise rápida de grandes conjuntos de dados de imagens. Este trabalho apresenta um método relativamente rápido de processamento, visualização e análise de fatias grossas de tecido neural rotulado em alta resolução usando clareira de tecido CLARITY, microscopia confocal e análise de imagem. Este protocolo facilitará os esforços para entender os padrões de conectividade e morfologias neuronais que caracterizam cérebros saudáveis, e as mudanças nessas características que surgem em estados cerebrais doentes.

Introduction

Compreender a organização espacial, padrões de conectividade e morfologia de estruturas biológicas tridimensionais complexas é essencial para delinear as funções de células e tecidos específicos. Isso é especialmente verdadeiro na neurociência, na qual um tremendo esforço tem sido dedicado à construção de mapas neuroanatomômicos de alta resolução do sistema nervoso central1,2. O exame minucial dos neurônios que compõem esses mapas produz morfologias variadas, com conexões e locais que refletem a função desses diversos conjuntos de neurônios3,4. Além disso, a investigação de estruturas subcelulares, especialmente colunas dendríticas, pode informar a maturidade das sinapses, refletindo assim processos de desenvolvimento e estados de doenças neurológicas5,6,7. Assim, abordagens que melhoram a resolução e o throughput de imagem são essenciais para uma melhor compreensão da função cerebral em todas as escalas.

Os recentes avanços expandiram o kit de ferramentas moleculares e genéticas para marcar e manipular populações de neurônios. O desenvolvimento de novos marcadores fluorescentes, combinados com novos métodos de introdução desses marcadores em neurônios, permite rotulagem diferencial de populações de neurônios interagindo dentro da mesma amostra animal ou cerebral8,9,10,11. Como a luz é dispersa por lipídios opacos, e dado o alto teor lipídeca do tecido cerebral, as populações neuronais de imagem foram limitadas principalmente a seções finas ou se basearam em técnicas avançadas de microscroba (por exemplo, confocal, multifótons e microscopia de folha de luz) para estruturas profundas de imagem. No entanto, esses esforços têm sido muito reforçados pelos avanços nas técnicas de limpeza de tecidos. Imagem rígida hibridada de lipídida/imunostaining/in situ hybridization-compatible Tissue-hYdrogel (CLARITY) é uma dessas técnicas, na qual tecidos de interesse são infundidos com monômeros de hidrogel (acrilamida e bis-acrilamida) e depois lavados com detergentes12. Os monômeros de hidrogel hibridizam-se para criar um andaime de hidrogel 3D estável que seja opticamente transparente e permeável aos rótulos de macromolécula. Os ácidos e proteínas nucleicos são mantidos dentro da matriz hibridizada, enquanto os lipídios são removidos pelas lavagens de detergente(Figura 1). Isso resulta em um tecido estável que é rígido o suficiente para manter a forma e orientação originais das células e moléculas não lipídicas, enquanto opticamente transparente o suficiente para facilmente imaginar estruturas profundas em alta resolução. Essa manutenção da estrutura e orientação tecidual permite a imagem de fatias grossas, preservando assim conexões célula-célula e relações espaciais. Além disso, como a localização e a disponibilidade de proteínas e ácidos nucleicos são mantidas durante o processo de compensação, os tecidos limpos são capazes de conter marcadores baseados em expressão, bem como rótulos exógenos. Assim, a CLARITY se presta como um método potente para a imagem de grandes quantidades de estruturas cerebrais profundas e as conexões entre essas estruturas em alta resolução.

O uso da CLARITY melhora muito as abordagens para as populações neuronais de imagem. Esta técnica é especialmente adepta à geração de grandes quantidades de dados de imagem. A CLARIDADE funciona bem com múltiplas formas de fluorescência à base de proteínas. Este protocolo utiliza uma abordagem baseada em lentiviral para células de rótulos escassos com EGFP e tdTomato; no entanto, alelos repórteres transgênicos expressando tdTomato ou EGFP para rotular células para reconstrução têm sido usados rotineiramente. É importante escolher um fluoróforo que seja foto-estável e brilhante (por exemplo, EGFP ou tdTomato). Além disso, usar um promotor forte para expressar o fluorohore produz contraste superior e qualidade de imagem. As desvantagens dessa técnica surgem como uma análise adequada dessa grande quantidade de dados pode ser tanto trabalhoso quanto tempo-intensivo. Microscópios especializados podem ajudar a melhorar o throughput e diminuir a carga de trabalho. No entanto, construir, possuir e/ou operar microscópios avançados são muitas vezes proibitivos de custos para muitos laboratórios. Este trabalho apresenta um método de alta produtividade, relativamente rápido e simples de visualizar grandes quantidades de tecido neural em alta resolução usando clareira de tecido DE GRANDE seções, combinada com microscopia confocal padrão. Este protocolo descreve essa abordagem através das seguintes etapas: 1) dissecação e preparação do tecido neural, 2) limpeza do tecido, 3) montagem do tecido, 4) imagens das fatias preparadas e 5) processamento de imagens completas de fatias utilizando reconstrução e análise de software de visualização de microscopia(Figura 2). Esses esforços resultam em imagens de alta resolução que podem ser usadas para analisar populações de neurônios, padrões de conexão neuronal, morfologia dendrítica 3D, abundância e morfologia da coluna dendrítica e padrões de expressão molecular dentro do tecido cerebral intacto.

Protocol

O protocolo a seguir segue todas as diretrizes de cuidados com animais para o Baylor College of Medicine. 1. Dissecção e preparação de tecidos Eutanize o rato com uma overdose de isoflurane colocando o rato em um recipiente fechado com uma toalha encharcada em isoflurane (ou por outros meios aprovados pelo IUCAC). Perfumar o animal transcardialmente usando uma agulha de 25 G com 10 mL de PBS gelado, seguido por 10 mL de 4% pfa. Dissecar a região cerebral (ou …

Representative Results

Após a aquisição de imagens, a morfologia celular representativa foi analisada utilizando estatísticas incorporadas e classificando scripts dentro do software de análise. Os dados coletados (Figura 6A) refletem que o neurônio 2 tem uma estrutura dendrítica maior com maior densidade de espinhas. Como um todo, os dados sugerem que o neurônio 2 tem uma estrutura dendrítica mais complexa em comparação com o neurônio 1. Para comprovar esse resultado, foi realizada a análise padrão d…

Discussion

Antes do advento das técnicas contemporâneas de limpeza de tecidos, o estudo da morfologia neuronal consistia em seção intensiva de tempo, imagem e reconstrução de seções muito finas adjacentes. O uso de limpeza de tecido eletroforético em combinação com imagens confocal fornece uma visão desobstruída da morfologia neuronal completa. De árvores dendríticas intactas, até o menor ataque sináptico, a imagem e a morfologia neuronal quantificada nunca foram tão viáveis.

A prepara…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Gostaríamos de agradecer ao núcleo viral NRDDC no Jan e Dan Duncan Neurological Institute por produzir os AAVs e lentivírus usados nesses experimentos. Além disso, gostaríamos de agradecer ao Baylor College of Medicine Center for Comparative Medicine pela criação de ratos e manutenção geral dos camundongos utilizados. Gostaríamos de agradecer à American Heart Association por seu apoio sob o prêmio número 20PRE35040011, e BRASS: Baylor Research Advocates for Student Scientists por seu apoio (PJH). Finalmente, gostaríamos de agradecer à Logos por fornecer ao nosso laboratório o sistema de limpeza de tecidos eletroforéticos Logos X-Clarity.

Materials

15 mL Conical Tube Thermo Scientific 339650
25 G x 1" Needle BD 305127
30% Acrylamide (No-Bis) National Diagnostics EC-810
50 mL Conical Tube Thermo Scientific 339653
Electrophoretic Tissue Clearing Solution Logos C13001
Histodenz Sigma D2158-100G
Hydrogel Solution Kit Logos C1310X
Imaris Oxford Instruments N/A
Paraformaldehyde 16% EMS 15710
PBS, 1x, 500 mL, 6 bottles/case fisher MT21040CV
VA-044 Wako 925-41020
X-CLARITY Polymerization System Logos C20001
X-CLARITY Tissue Clearing System II Logos C30001

References

  1. Abbott, L. F., et al. The Mind of a mouse. Cell. 182 (6), 1372-1376 (2020).
  2. White, J. G., Southgate, E., Thomson, J. N., Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences. 314 (1165), 1 (1986).
  3. Jiang, X., et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science. 350 (6264), (2015).
  4. Winnubst, J., et al. Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell. 179 (1), 268-281 (2019).
  5. Araya, R., Vogels, T. P., Yuste, R. Activity-dependent dendritic spine neck changes are correlated with synaptic strength. Proceedings of the National Academy of Sciences of the United States of America. 111 (28), (2014).
  6. Bosch, M., Hayashi, Y. Structural plasticity of dendritic spines. Current Opinion in Neurobiology. 22 (3), 383-388 (2012).
  7. Martínez-Cerdeño, V. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Developmental Neurobiology. 77 (4), 393-404 (2017).
  8. Arenkiel, B. R., Ehlers, M. D. Molecular genetics and imaging technologies for circuit-based neuroanatomy. Nature. 461 (7266), 900-907 (2009).
  9. Kim, E. H., Chin, G., Rong, G., Poskanzer, K. E., Clark, H. A. Optical probes for neurobiological sensing and imaging. Accounts of Chemical Research. 51 (5), 1023-1032 (2018).
  10. Weissman, T. A., Pan, Y. A. Brainbow: New resources and emerging biological applications for multicolor genetic labeling and analysis. Genetics. 199 (2), 293-306 (2014).
  11. Haggerty, D. L., Grecco, G. G., Reeves, K. C., Atwood, B. Adeno-associated viral vectors in neuroscience research. Molecular Therapy – Methods and Clinical Development. 17, 69-82 (2020).
  12. Chung, K., et al. Structural and molecular interrogation of intact biological systems. Nature. 497 (7449), 332-337 (2013).
  13. Kanning, K. C., Kaplan, A., Henderson, C. E. Motor neuron diversity in development and disease. Annual Review of Neuroscience. 33, 409-440 (2010).
  14. Ledda, F., Paratcha, G. Mechanisms regulating dendritic arbor patterning. Cellular and Molecular Life Sciences. 74 (24), 4511-4537 (2017).
  15. Falougy, H. E., Filova, B., Ostatnikova, D., Bacova, Z., Bakos, J. Neuronal morphology alterations in autism and possible role of oxytocin. Endocrine Regulations. 53 (1), 46-54 (2019).

Play Video

Cite This Article
Pekarek, B. T., Hunt, P. J., Belfort, B. D. W., Liu, G., Arenkiel, B. R. Imaging and Quantification of Intact Neuronal Dendrites via CLARITY Tissue Clearing. J. Vis. Exp. (170), e62532, doi:10.3791/62532 (2021).

View Video